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Abstract

Problem definition: We consider a customer-to-customer (C2C) platform that provides

an inspection service. Uncertain about his product’s authenticity, a seller sells his product

through the platform. Before purchasing, a buyer obtains a signal of the product authenticity

from the product’s price set by the seller. The platform’s inspection service can detect a

counterfeit with a probability. If the product passes the inspection, the platform sends it to

the buyer and charges the seller a commission fee. Otherwise, the platform returns it to the

seller and charges the seller a penalty fee.

Methodology/results: We develop a two-stage game-theoretical model. In the first

stage, the platform designs a contract specifying the commission and penalty fees. In the

second stage, the seller signals his product authenticity by setting a price and the buyer

decides whether to purchase it. This results in a contract design problem that governs a

signaling game. We find that the effect of inspection is beyond merely detecting counter-

feits. The inspection, even an imperfect one, changes the signaling game’s structure and

incentivizes the seller whose product is likely authentic to sell through the platform. This

can only be achieved by carefully choosing the commission and penalty fees. Moreover, a

larger platform’s expected profit does not imply a larger commission fee or price in equi-

librium. Under some mild conditions, the optimal commission increases but the optimal

penalty decreases as the platform’s inspection capability improves.

Managerial implications: The inspection service is not widely available among leading

C2C platforms as it is considered imperfect and costly. Our study suggests that its benefit

may be underestimated in practice. Moreover, the inspection can eliminate the seller’s

information rent and generate more revenue for the platform. This paper provides guidance

on how to set commission and penalty fees when the inspection service is provided.

Keywords: asymmetric information, counterfeit, inspection, platform

1 Introduction

Customer-to-Customer (C2C) platforms receive increasing attention among e-commerce busi-

ness models. Prominent examples of C2C platforms include eBay and Taobao, which act as
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an intermediary to match individual sellers and buyers. Under this business model, the sellers

display their products on a platform and send purchased items to the buyers directly. The

platform obtains revenue by charging a commission fee whenever a product is successfully sold.

Most C2C platforms have little control over the authenticity of the products displayed. As a

result, complaints about counterfeits are on the rise (Rivera, 2018). According to Suthivarakom

(2020), with third-party sellers on Amazon, the keyword “counterfeit” or “fake” appears in

1.725% and 4.275% of all the Amazon’s reviews in 2015 and 2019 respectively. Similarly, Taobao

was found to have 240,000 vendors selling counterfeits in 2017 (Hawkins and Thorpe, 2019).

Recently, sneaker resale is becoming a fiercely contested market as some shoppers collect rare

merchandise and sell it at a markup price online (Patel, 2019). With a lucrative profit, there

are more and more counterfeits in the sneaker market. The fake Nike footwear in 2019 would be

worth more than $472 million if it were real (Rohrlich, 2020). C2C platforms cannot guarantee

the authenticity of listed products because they do not physically handle the products. In

addition, it is difficult for buyers to judge the authenticity because they cannot physically assess

the products before purchases. Thus, buyers are worried about ending up with a counterfeit at

a high price (Kim, 2018, Suthivarakom, 2020).

Being aware of the product’s origin and able to physically assess the items, sellers generally

know more about the authenticity of their products than buyers. Some professional sellers

on Amazon and Taobao may know whether their products are authentic when they know the

product source. However, many of the sellers on C2C platforms are non-professional and may

not be completely sure about the authenticity of their products. For example, high-end sneakers

are usually offered in a limited quantity and have a long trade tail as the shoes continue to be

bought and sold on secondary markets (Dennis, 2019). Although the source is not completely

reliable, most collectors purchase such sneakers through the secondary markets instead of official

channels. Moreover, some fake items resemble the authentic ones so closely that it becomes very

challenging to differentiate them (Koaysomboon, 2018). Even skilled appraisers make mistakes

sometimes (Clifford, 2019). It requires professional training and extensive experience to inspect

the products. Due to unreliable sources and the lack of professional inspection capability, many

sellers on C2C platforms are not completely certain about the authenticity of their products.

To address the issue of product authenticity or quality, the literature (for example, Baiman

et al., 2000, Hwang et al., 2006, Babich and Tang, 2012) has investigated ex ante and ex post

inspections. The ex ante inspections certify sellers prior to transactions, whereas the ex post
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inspections refer to inspections by buyers after receiving the products. Different from the litera-

ture, we study interim inspections adopted by some C2C e-commerce platforms, where products

are inspected after buyers place their orders but before receiving the products. Typical C2C plat-

forms implementing the interim inspections include StockX, Goat, and Poizon (see stockx.com,

goat.com, and poizon.com respectively). These platforms improve their inspection capability

by investing heavily in advanced technology and experienced inspectors. For example, Goat en-

hances its platform’s inspection technology using machine learning (Kelly, 2018). Although the

interim inspections may cause a delay in transactions, buyers value this service, making these

platforms popular. For example, in 2020 StockX completed more than 7.5 million transactions

and its gross product value reached $1.8 billion (Farrell, 2021).

The transactions on these platforms proceed as follows. A seller first displays his product

on a platform and sets a price. If a buyer decides to purchase the product, she pays the price

to the platform. The seller then sends the purchased item to the platform for inspection. If the

product passes the inspection, it will be shipped to the buyer. In this case, the platform charges

a fraction of the selling price as a commission fee and remits the remaining amount to the seller.

For example, StockX sets 8% to 14.5% of the price as a commission fee for different product

categories, whereas Goat sets 9.5% to 25% of the price as a commission fee. If the product fails

the inspection, the platform returns the item to the seller. In that case, the platform refunds

the payment to the buyer and may penalize the seller based on the selling price. For example,

StockX asks for 15% of the price as a penalty fee, while Goat has zero penalty to the seller. In

practice, different platforms adopt different policies for the commission and penalty fees. One

of our goals is to identify the optimal policy for the platforms.

We develop a game-theoretical model to capture the interactions among a platform, a seller,

and a buyer. Being uncertain about his product’s authenticity, the seller sells his product

through the platform. Before purchasing the product, the buyer has even less information

about the product authenticity and only obtains a signal from the product’s price set by the

seller. The platform can detect whether the product is a counterfeit with a probability, which

measures the platform’s inspection capability. If the product passes the inspection, the platform

sends the product to the buyer and charges the seller a commission fee. If the product fails

the inspection, the platform returns the product to the seller and charges the seller a penalty

fee. The game has two stages. In the first stage, the platform designs a contract specifying the

commission and penalty fees as fractions of the selling price anticipating the interaction between
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the seller and the buyer. In the second stage, given the contract, the interaction between the

seller and the buyer forms a signaling game. The seller signals his product’s authenticity by

setting the price. Given the price, the buyer then decides whether to purchase the product.

We analyze the equilibrium decisions of the three parties given that the platform provides

the inspection service and the seller is uncertain about his product authenticity. Specifically,

we would like to answer the following questions:

1. How does the platform’s inspection affect the seller’s pricing decision? What are the

benefits for the platform to provide the inspection service?

2. How should the platform set the commission and the penalty fractions to maximize its

profit? How does the platform’s inspection capability affect its commission and penalty?

3. What if the seller knows his product authenticity? How do the equilibrium results and

managerial insights differ from the case in which the seller is uncertain about it?

We summarize our findings and contributions as follows. We find that the effect of inspection

is beyond merely detecting counterfeit products. The inspection, even an imperfect one, changes

the structure of the signaling game completely. It incentivizes only the high-product-authenticity

seller to sell through the platform. However, this can only be achieved with carefully designed

commission and penalty fees. Since the inspection service is not yet widely available among

leading C2C e-commerce platforms, our results suggest that the benefit of product authenticity

inspection may be underestimated in practice. In addition, with the inspection service, the

platform can eliminate the information rent earned by the seller. This generates more revenue

for the platform.

To maximize its expected profit, we identify the optimal contract for the platform. We find

that a larger platform’s expected profit does not imply a larger commission fraction or a higher

price in equilibrium. Under some mild conditions, the optimal commission fraction increases but

the optimal penalty fraction decreases as the platform’s inspection capability improves. This

implies that the platform should adjust the contract parameters accordingly if its inspection

capability changes because of the use of new technology or new inspectors. If the inspection is

perfect such that the platform can identify all the counterfeits, it is optimal for the platform to

remove the penalty fee completely.

We find that the equilibrium results and managerial insights do depend on whether the seller

is certain about the product authenticity. Specifically, if the seller knows whether his product
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is authentic or counterfeit, the platform can design a contract to screen out the seller with a

counterfeit. In this case, the product on the platform would be authentic, and the platform’s

profit and optimal commission would not depend on the inspection capability. In contrast, if the

seller is uncertain about his product authenticity, products with different authenticity levels may

be sold through the platform, reflecting what happens on C2C platforms selling second-hand

collectible goods (such as StockX, Goat, and Poizon).

The rest of this paper is organized as follows. §2 reviews the related literature. §3 describes

the two-stage model. §4 solves the signaling game in the second stage. §5 derives the platform’s

optimal contract in the first stage. §6 conducts sensitivity analysis both analytically and nu-

merically. §7 analyzes the case where the seller is certain about his product authenticity. §8

discusses managerial insights and concludes the paper. Appendix A provides additional results.

Appendix B discusses two extensions of our model. Appendix C presents all proofs.

2 Related Literature

This paper studies a C2C platform with an inspection service under asymmetric information

about product authenticity. It is related to four streams of literature: quality management and

inspections in a decentralized supply chain, signaling asymmetric quality information, counter-

feit products, and platform business models.

The quality management literature typically focuses on inspection decisions and contract

designs in a moral hazard setting in which suppliers’ quality decisions cannot be observed.

For example, Baiman et al. (2000) analyze a variety of scenarios in which players’ actions

or product failures may or may not be contractible. Hwang et al. (2006) compare buyers’

inspection and vendors’ certification. Babich and Tang (2012) consider three mechanisms to

deal with product adulteration problems: deferred payment, product inspection, and combined

mechanisms. Seung and Taesu (2018) investigate several reward mechanisms for collaborative

product quality improvement in a buyer-driven supply chain. Mariya and Edieal (2018) consider

buyers’ investment efforts to improve supplier quality, monetary incentives to motivate suppliers’

quality-improvement efforts, and inspection upon supplier delivery to control outgoing quality.

Lee and Li (2018) model the interaction between a buyer and a supplier using relational contracts

in which penalties for quality failures are set so that the supplier voluntarily pays them. Different

from these papers, our paper falls into the category of adverse selection in games with incomplete

information rather than moral hazard. Specifically, we consider that the seller who has better
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(but not perfect) information about product quality tries to signal that information to the buyer

with or without an inspection. This is not analyzed in this stream of literature.

Our work is closely related to signaling quality information. Several different forms of qual-

ity signals have been examined in the literature, including advertising (Kihlstrom and Riordan,

1984, Milgrom and Roberts, 1986), pricing (Bagwell and Riordan, 1991, Stiving, 2000), war-

ranties (Lutz, 1989, Boulding and Kirmani, 1993), money-back guarantee (Moorthy and Srini-

vasan, 1995), umbrella branding (Wernerfelt, 1988), scarcity (Stock and Balachander, 2005),

queues (Debo et al., 2012), and brand extension (Moorthy, 2012). Kirmani and Rao (2000)

provide a comprehensive review of the literature on signaling quality. Yu et al. (2015) show

that capacity rationing in advance selling can be an effective signal of quality and use Pareto

dominance to select equilibrium. Different from this stream of literature, we investigate how a

platform’s inspection affects quality signaling between a seller and a buyer on the platform. To

the best of our knowledge, our paper is the first to analyze the impact of inspection in a sig-

naling setting. In addition, different from the literature, we consider a contract-design problem

governing a signaling game. The platform’s optimal contract depends on the equilibrium of the

signaling game between the seller and the buyer. This makes our model technically challeng-

ing to solve. Finally, most of the quality signaling papers consider only two quality types: a

high type or a low type. In contrast, we assume the seller’s type is continuous, representing a

probability of his product authenticity. This model element reflects sellers’ uncertainty about

product authenticity on C2C platforms especially when selling second-hand collectible goods.

Although our model can be applied to general quality problems on C2C platforms, product

counterfeiting is a major cause of these quality problems, which relates our paper to the litera-

ture on counterfeit products. Wilcox et al. (2009) consider how luxury brands express themselves

affects consumers’ desire for counterfeits. Zhang et al. (2012) study how non-deceptive counter-

feits affect the price, market share, and profitability of brand name products. Hu et al. (2013)

consider a distribution channel consisting of a supplier who offers all-unit quantity discounts

and a reseller who may divert some goods to the gray markets. Qian (2014) shows that fake

products can benefit a manufacturer of high-quality products during the early stage of brand

development. Cho et al. (2015) examine the effectiveness of anticounterfeit strategies against

both deceptive and non-deceptive counterfeiters. Gao et al. (2017) find that copycats with

a high physical resemblance but low product quality are more likely to successfully enter the

market. Pun and DeYong (2017) examine the decisions of a manufacturer and a copycat firm
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who are competing for strategic customers. Yao and Zhu (2018) study the economic impact of

anticounterfeit technology and explore measures to help increase the authentic company’s profit.

Pun et al. (2018) study how blockchain technology can be used to combat counterfeiting. Tang

et al. (2020) study online platforms’ anticounterfeit efforts to deter the entry of counterfeits

under different business models. Guan et al. (2020) examine the impact of supplier copycat-

ting in the presence of information asymmetry on product fit. Yi et al. (2020) investigate

how counterfeits influence a global supply chain and how the supply chain should effectively

take anticounterfeit actions. Chen and Papanastasiou (2021) examine the interaction between

social-learning manipulation and equilibrium market outcomes as well as the impact of anti-

manipulation measures. Wang et al. (2020) provide a literature review on counterfeiting and

gray market in operations management. None of the above papers analyze how a platform’s

inspection affects a seller’s signaling of product authenticity as in our paper. Furthermore, in

these papers, a manufacturer either produces authentic products or counterfeits. In contrast,

the seller is not certain about the authenticity of his product in our model.

Finally, our paper is also related to the literature on platform business models. Some

papers in this stream focus on the trade-off between platform business models and traditional

alternatives: a marketplace versus a reseller in Hagiu and Wright (2015) and Tian et al. (2018),

a platform versus a vertically integrated firm in Hagiu and Wright (2018), and agency selling

versus reselling in Abhishek et al. (2016). Jiang et al. (2011) consider that an e-retailer can

function as a platform, and at the same time, sell directly. They find that functioning as a

platform enables the e-retailer to learn about the demand for long-tail products sold by its

enrolled sellers, and then to cherry-pick the successful ones for direct selling. Mantin et al.

(2014) show that by introducing the platform format, a traditional retailer will create an outside

option that improves its bargaining power in a negotiation with a manufacturer. Several papers

consider peer-to-peer platforms where each consumer can be a supplier or a buyer. See, for

example, Fraiberger and Sundararajan (2015), Jiang and Tian (2016), Benjaafar et al. (2018),

Tian and Jiang (2018), and Abhishek et al. (2021). To the best of our knowledge, none of the

papers in this stream analyze the contract design of a platform that offers an inspection service

as in our paper. The seller in our model pays a penalty if his product fails the inspection. Thus,

the contract that we study has its particular structure including both the commission and the

penalty, which is different from the settings in the literature.
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3 Problem Formulation

We consider a C2C e-commerce platform, a seller, and a buyer. The platform (such as StockX)

serves as an online marketplace and provides a product inspection service. The platform first

designs a contract, and then the seller decides whether to accept it. If the seller accepts the

contract, he sells his product through the platform by setting a price. After seeing the price,

the buyer decides whether to purchase the product.

The seller’s product is either authentic (θ = 1) with probability λ or counterfeit (θ = 0)

with probability (1− λ), where λ ∈ [0, 1]. As discussed in §1, the seller is not certain about his

product authenticity, but he knows the probability λ as his private information. We call λ the

type of the seller. Following the literature of signaling games (see, for example, Kirmani and

Rao, 2000), we assume that the platform and the buyer only know the probability distribution

of λ over [0, 1] with p.d.f. f(·) and c.d.f. F (·). We call this probability distribution the common

prior belief of the platform and the buyer about λ. Except the seller’s type λ, all the information

is public to all the three parties.

Let µS and µB represent the reservation prices of the seller and the buyer, respectively, for an

authentic product. In contrast, for a counterfeit product, we assume that the reservation prices

of the seller and the buyer are zero. Thus, the seller’s expected reservation price is λµS , which

depends on his type λ. If the seller chooses not to sell through the platform, then he can earn

a revenue that is equal to his expected reservation price through an outside option. Knowing

his type λ, the seller makes his pricing decision π(λ) : [0, 1] → [0, µB] ∪ {∞}, where ∞ is a

formidable price representing that the seller does not wish to sell his product on the platform.

After observing the price π, the buyer makes her purchase decision I(π) : [0, µB] → {0, 1},

where I(π) equals 1 if she purchases the product and 0 otherwise.

If the buyer decides to purchase the product, she pays the price π to the platform. The seller

then sends his product to the platform for an inspection. Inspired by the quality inspection

literature (Baiman et al., 2000, Hwang et al., 2006, Lee and Li, 2018), we assume that an

authentic product always passes the inspection. In contrast, a counterfeit product fails the

inspection with probability PM , where PM ∈ [0, 1] represents the platform’s inspection capability.

We assume that the inspection is conducted by an independent and professional team and thus

cannot be manipulated by the platform.

If the product passes the inspection, then the platform sends the product to the buyer. The

platform keeps a fraction α of the payment π as a commission and remits the remaining fraction
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(1− α) to the seller. If the product fails the inspection, the seller pays a fraction β of π to the

platform as a penalty (see, for example, stockx.com). The product is then returned to the seller

and the platform refunds the payment π to the buyer. To make our model general, we assume

α ∈ (−∞, 1] and β ∈ [0,∞). For the inspection, the platform incurs an inspection cost c to

handle and inspect the product. To avoid uninteresting equilibria, we assume 0 ≤ c < µB −µS .

After receiving the product, the buyer may inspect it. Likewise, we assume that an au-

thentic product always passes the buyer’s inspection, whereas a counterfeit product fails the

buyer’s inspection with probability PB ∈ [0, 1]. If the buyer finds that the received product is a

counterfeit, an external failure occurs and the platform incurs an external failure loss ℓ, which

includes the loss due to customer dissatisfaction (Baiman et al., 2000). The product cannot

be returned because it is difficult for the buyer to provide evidences that the product passing

the platform’s inspection is a counterfeit. For example, StockX does not allow product returns.

Figure 1 illustrates the event flow after the buyer purchases the product.

Figure 1: The event flow after the buyer purchases the product

There are two stages in the decision-making process. In the first stage, the platform chooses

the contract parameters α and β. After knowing the contract (α, β), the seller decides whether

to sell his product through the platform by setting the price π based on his type λ in the second

stage. After observing the price π, the buyer updates her belief about the seller’s type and

decides whether to purchase the product. Figure 2 shows the sequence of the decisions.

Figure 2: The decision sequence

Given a contract (α, β), the interaction between the seller and the buyer forms a signaling

game. Following a backward induction, we first analyze the equilibrium of the signaling game
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in the second stage, and then identify the platform’s optimal contract in the first stage taking

into account the impact of the contract on the signaling game.

4 The Second Stage: Signaling Game

We first analyze the equilibrium of the second-stage signaling game, which is a dynamic game

with incomplete information. In this game, the seller uses the price to signal the product’s

authenticity, and then the buyer decides whether to purchase the product.

We employ the concept of perfect Bayesian equilibrium (see its definition in Appendix C)

to analyze the game. Following the literature of signaling games (see, for example, Bagwell

and Riordan, 1991), we focus on pure-strategy equilibria. Moreover, if multiple equilibria exist,

we apply Pareto dominance to select an equilibrium (Fudenberg and Tirole, 1991, Yu et al.,

2015). Specifically, we choose an equilibrium that Pareto dominates others from the seller’s

point of view (in this equilibrium, each seller type λ obtains a revenue no less than what he

earns in any other equilibria). Since the seller makes a decision first in the signaling game, it is

reasonable to assume that the seller can choose the equilibrium most appealing to himself. Such

an equilibrium is supported by behavioral experiments (Van, 1999). Lastly, to avoid trivialities,

we focus on participating equilibria (Yu et al., 2015, Janssen et al., 2005). Specifically, we assume

that in an equilibrium the seller would not adopt price 0 or a price that is rejected by the buyer.

In these cases, it is more profitable for the seller to choose not to sell through the platform.

Therefore, we focus on a set of equilibria in which the seller either chooses not to sell through

the platform (π = ∞) or adopts a positive price (0 < π ≤ µB) that is acceptable to the buyer.

Different from the literature on price signaling, we investigate the effect of inspection on

the signaling game. We first present the equilibrium results with the platform providing the

inspection service in §4.1. After that, we compare these results with a case in which the platform

does not provide the inspection service in §4.2.

4.1 Equilibrium Results of The Signaling Game

We first analyze the purchase decision of the buyer. According to Figure 1, the probability for

the product to pass the platform’s inspection is λ+ (1− λ)(1− PM ). Thus, the expected cost

for the buyer to purchase the product is (1−PM +PMλ)π. Given π ∈ (0, µB] and λ ∈ [0, 1], the

buyer’s utility is RB(I;π, λ) = [λµB − (1− PM + PMλ)π] I, where λµB represents the buyer’s

expected reservation price. After observing the price π, the buyer generates a posterior belief
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about the seller’s type λ, which is a probability distribution over [0, 1] with p.d.f. m(·|π). The

buyer’s expected utility is RB(I;π) =
∫ 1
0 RB(I;π, x)m(x|π)dx. The buyer purchases the product

(I∗(π) = 1) if and only if RB(1;π) ≥ RB(0;π) = 0, which is equivalent to

E[λ|π] ≥ q(π) ≜
(1− PM )π

µB − PMπ
, (1)

where E[λ|π] ≜
∫ 1
0 xm(x|π)dx is the seller’s expected type from the buyer’s perspective after

she observes the price π, and q(π) is the critical level of the seller’s expected type.

Lemma 1. (The buyer’s equilibrium decision) After observing the price π, the buyer

purchases the product (that is, I∗(π) = 1) if and only if the seller’s expected type E[λ|π] is no

less than its critical level q(π).

To analyze the seller’s decision, we need to determine his expected revenue. Based on

Figure 1, the seller obtains the revenue (1 − α)π if his product passes the inspection with

probability λ+(1−λ)(1−PM ), but pays the penalty βπ if his product fails the inspection with

probability (1− λ)PM . Thus, if the seller chooses to sell his product with price π ∈ (0, µB], his

expected revenue is RS(π;λ, I) = [(1− PM + PMλ)(1− α)π − (1− λ)PMβπ] I. If he chooses

not to sell through the platform (π = ∞), his expected revenue RS(π;λ, I) is equal to his

expected reservation price λµS .

Next, we derive the equilibrium of the second-stage signaling game. We will prove in §5 that

the platform’s optimal contract does not choose a small penalty fraction (β < 1−PM
PM

(1 − α)).

Thus, we present the equilibrium analysis under a small penalty fraction in Appendix A.1 and

focus on the equilibrium under a large penalty fraction (β > 1−PM
PM

(1− α)) below. Specifically,

we follow the three steps illustrated in Figure 3 to derive the equilibrium of the signaling game.

Step 1
Reduce the space of pos-
sible equilibria (Lemmas
2 and 3).

⇒
Step 2

Find all the equilibria within
the reduced space (Lemma
C.1 in Appendix C).

⇒
Step 3

Refine the equilibria by
Pareto dominance (The-
orem 1).

Figure 3: Three steps to derive the equilibrium of the signaling game

4.1.1 Step 1: Reduce The Space of Possible Equilibria

In contrast to signaling games with discrete types, the seller’s type is continuous in our model.

As a result, the seller’s pricing decision is a function π(λ) : [0, 1] → (0, µB]∪{∞}. There is an in-

finite number of possible functions mapping from [0, 1] to (0, µB]∪{∞}. Thus, we identify some
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necessary conditions of the seller’s equilibrium decision π∗(λ) in Lemma 2, which will substan-

tially simplify our subsequent analysis. Given (α, β), define a constant λ̂ ≜ PMβ−(1−PM )(1−α)
PM (1−α+β)

and a function A
(
λ̂
)
≜ λ̂µS

PM (1−α+β)λ̂+(1−PM )(1−α)−PMβ
.

Lemma 2. (Structures of the seller’s equilibrium decision)

If β > 1−PM
PM

(1− α), the seller’s equilibrium pricing decision has one of the following forms:

(i) π∗(λ) = ∞ if λ < λ̂ and π∗(λ) = π̂ if λ ≥ λ̂, where

λ̂ < λ̂ ≤ 1, π̂ = A
(
λ̂
)
. (2)

(ii) π∗(λ) = ∞ for 0 ≤ λ ≤ 1.

Lemma 2 implies that the seller, who chooses to sell, adopts the same equilibrium price π̂

regardless of his type. This is because if the seller chooses to sell, his expected revenue RS(π;λ, I)

increases with π as long as the price is acceptable to the buyer (that is, I∗(π) = 1). Thus, to

maximize his expected revenue, the seller, who chooses to sell, should adopt the highest price

acceptable to the buyer regardless of his type. In other words, a strategy profile with different

seller types adopting more than one selling price is not an equilibrium in our model, because

the seller types adopting the lower prices always have incentives to deviate to the highest price.

Thus, only semi pooling equilibria (part 1 of Lemma 2) with one selling price or pooling equilibria

(part 2 of Lemma 2) may arise in this signaling game. This is different from the literature on

separating equilibrium (for example, Bagwell and Riordan, 1991, Yu et al., 2015) because the

seller’s revenue in our problem can be separated in terms of the seller type λ and the signal π

(see the proof of Lemma 2 for details).

We further explain the structure of the equilibrium pricing decision specified in Lemma 2 as

follows. If the penalty fraction β is large, part 1 of Lemma 2 shows that there may exist a semi

pooling equilibrium, in which the seller with type larger than a threshold (λ ≥ λ̂) chooses to sell

with the same equilibrium price π̂, while the seller with type smaller than the threshold refuses

to sell. In this semi pooling equilibrium, the seller can partially reveal his type by the pricing

decision. Specifically, the equilibrium price π̂ signals that the seller’s type is no less than λ̂.

Let R̂S(λ) = RS (π̂;λ, I∗ (π̂)) = [(1− PM + PMλ)(1− α)− (1− λ)PMβ] π̂ represent the seller’s

expected revenue by adopting the equilibrium price π̂. In Figure 4, the bold solid line represents

R̂S(λ) and the thin solid line represents the seller’s expected reservation price λµS . The two

lines intersect at λ̂, which is implied by the condition π̂ = A
(
λ̂
)
in (2), where type-λ̂ seller is

indifferent between selling with price π̂ and not selling. The seller with λ < λ̂ refuses to sell

through the platform because he will earn less than his expected reservation price if he sells

12



with price π̂. In contrast, the seller with λ ≥ λ̂ earns more than his expected reservation price

λµS by selling with price π̂, and he chooses to sell through the platform.

Figure 4: The seller’s expected revenue R̂S(λ) by selling with price π̂

Next, we identify the condition on the equilibrium price π̂ such that it is acceptable to the

buyer. Denote F̄ (x) = 1−F (x). The buyer’s on-equilibrium belief m (·|π̂) (the belief associated

with the price adopted on the equilibrium path) should satisfy the Bayesian rule: m (x|π̂) equals

f(x)
/
F̄
(
λ̂
)
if x ≥ λ̂, and 0 otherwise. Thus, E[λ|π̂] =

∫ 1
0 xm(x|π̂)dx =

∫ 1
λ̂ xf(x)dx

/
F̄
(
λ̂
)
.

According to Lemma 1, I∗ (π̂) = 1 if and only if E[λ|π̂] ≥ q(π̂), which is equivalent to π̂ ≤
µBE[λ|π̂]

1−PM+PME[λ|π̂] . Therefore, we obtain

π̂ ≤ Π̂
(
λ̂
)
≜

µB

∫ 1

λ̂
xf(x)dx∫ 1

λ̂
(1− PM + PMx)f(x)dx

, λ̂ ∈ [0, 1), (3)

where Π̂
(
λ̂
)
represents the expected value of the product from the buyer’s perspective given

her posterior belief about the seller type. The buyer is willing to purchase the product with

a price no higher than Π̂
(
λ̂
)
when only the high-type seller with λ ≥ λ̂ chooses to sell. Note

that the definition of Π̂
(
λ̂
)
is not applicable to λ̂ = 1 because its denominator is 0 at λ̂ = 1

(see (3)). For consistency, we define Π̂(1) = lim
λ̂→1−

Π̂
(
λ̂
)
= µB. Intuitively, when only the seller

with type λ = 1 (authentic for sure) chooses to sell, the buyer is willing to purchase the product

with a price no higher than his reservation price µB for an authentic product. Therefore, we

obtain Lemma 3 below.

Lemma 3. In a semi pooling equilibrium where π∗(λ) = ∞ if λ < λ̂ and π∗(λ) = π̂ if λ ≥ λ̂,

the equilibrium price satisfies π̂ ≤ Π̂
(
λ̂
)
.

4.1.2 Step 2: Find all the equilibria within the reduced space

Lemmas 2 and 3 characterize necessary conditions that an equilibrium needs to satisfy. This

significantly reduces the space of possible equilibria. Next, we identify all the equilibria within
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this reduced space. Specifically, we prove that any pair of λ̂ and π̂ satisfying conditions (2) and

(3) can lead to a semi pooling equilibrium with appropriately specified off-equilibrium beliefs,

and a pooling equilibrium also exists. Due to space limitation, we summarize all the equilibria

for different contract parameter values in Lemma C.1 in Appendix C.

4.1.3 Step 3: Refine the equilibria by Pareto dominance

Within the reduced space, still there are infinitely many equilibria (see part 1 of Lemma C.1

in Appendix C). Among these equilibria, we choose an equilibrium that Pareto dominates the

others such that in this equilibrium, each seller type λ obtains a revenue no less than what he

earns in any other equilibria. We prove in Theorem 1 that after refining the equilibria by Pareto

dominance, there exists a unique semi pooling equilibrium determined by λ̂∗, which is the unique

root of A
(
λ̂
)
= Π̂

(
λ̂
)
. Although the equilibrium threshold λ̂∗ cannot be expressed as a closed-

form function of α and β, we are able to derive a set of (α, β) that induces the equilibrium with

λ̂∗. Define Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α < 1− µS

Π̂(λ̂∗)
, β =

(1−PM+PM λ̂∗)(1−α)Π̂(λ̂∗)−λ̂∗µS

(1−λ̂∗)PM Π̂(λ̂∗)

}
for 0 < λ̂∗ <

1, and Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

Π̂(λ̂∗)
, β > 1−PM

PM
(1− α)

}
for λ̂∗ = 1. Theorem 1 summarizes

the complete equilibrium result of the signaling game after the refinement.

Theorem 1. (Refined equilibrium of the signaling game) If the platform provides the

inspection service (PM > 0), under the contract (α, β) ∈ Ω
(
λ̂∗

)
and λ̂∗ ∈ (0, 1], there exists

a unique pure-strategy perfect Bayesian equilibrium that Pareto dominates other equilibria from

the seller’s point of view. We have the following results in this equilibrium.

The seller’s pricing decision is

π∗(λ) =

{
∞, if λ < λ̂∗;

π̂∗ ≜ Π̂
(
λ̂∗

)
, if λ ≥ λ̂∗.

The buyer’s purchase decision is

I∗(π) =


I(E[λ|π] ≥ q(π)), if 0 < π < π̂∗;

1, if π = π̂∗;

0, if π̂∗ < π ≤ µB.

(4)

The buyer’s beliefs m∗(·|π) are determined as follows:

(i) If 0 < π < π̂∗, then m∗(x|π) is arbitrary.
(ii) If π = π̂∗, then

m∗(x|π) =

{
0, if x < λ̂∗;
f(x)

F̄(λ̂∗)
, if x ≥ λ̂∗.

(iii) If π̂∗ < π ≤ µB, then m∗(x|π) satisfies E[λ|π] =
∫ 1
0 xm∗(x|π)dx < q(π).
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There exists a unique semi pooling equilibrium for the signaling game: The seller chooses to

sell his product with the same equilibrium price π̂∗ if λ ≥ λ̂∗, but he chooses not to sell through

the platform if λ < λ̂∗. Note that the equilibrium price π̂∗ attains its upper bound Π̂
(
λ̂∗

)
in

Lemma 3. The equilibrium price π̂∗ reveals that the seller’s type is no less than λ̂∗ and the

on-equilibrium belief m∗(·|π) for π = π̂∗ satisfies the Bayesian rule. The off-equilibrium belief

is specified for the price π > π̂∗ so that the expected type of the seller conditioned on the price

π cannot be too high. Although the off-equilibrium belief can be arbitrary for the price π < π̂∗,

the buyer’s decision in (4) should be consistent with her belief. We provide additional details

of the beliefs in Appendix C.

Theorem 1 shows that the inspection, even an imperfect one, incentivizes the high-type

seller with λ ≥ λ̂∗ to sell through the platform. However, this can only be achieved by carefully

choosing the commission fraction α and penalty fraction β. Specifically, the equilibrium in which

the seller with λ ≥ λ̂∗ chooses to sell is sustained by contract parameters (α, β) ∈ Ω
(
λ̂∗

)
. Figure

5 illustrates the set Ω
(
λ̂∗

)
on the α-β plane. Given λ̂∗ ∈ [0, 1], Ω

(
λ̂∗

)
is a ray (without the

end point) in the dotted region of Figure 5, where α is small and β is large. All (α, β) points

on the ray Ω
(
λ̂∗

)
can induce the equilibrium in Theorem 1.

Figure 5: Equilibria under different contract parameter values

Define Ω (1+) =
{
(α, β)

∣∣α > 1− µS
µB

, β > 1−PM
PM

(1− α)
}
, which corresponds to the shaded

region in Figure 5. Corollary 1 summarizes the equilibrium in Ω (1+).

Corollary 1. If the platform provides the inspection service (PM > 0), under the contract

(α, β) ∈ Ω(1+), the seller will not sell through the platform with π∗(λ) = ∞ for 0 ≤ λ ≤ 1.

Intuitively, a larger commission fraction α or penalty fraction β leads to a smaller set of seller

types that want to sell through the platform. For large α and β as given in the shaded region

Ω (1+) in Figure 5, the seller earns less than his expected reservation price by adopting any price

π ∈ (0, µB]. Thus, the seller chooses not to sell through the platform regardless of his type.
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Theorem 1 and Corollary 1 analyze the equilibria of the second-stage signaling game under

a large penalty fraction (β > 1−PM
PM

(1 − α)), and next we analyze the equilibria of boundary

cases (β = 1−PM
PM

(1 − α)). The boundary cases consist of the following three parts: (i) Ω(0) =

{(α, β)|α < 1 − µS

Π̂(0)
, β = 1−PM

PM
(1 − α)}, which is a ray (without its end point) shown in

Figure 5; (ii) V
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

Π̂(λ̂∗)
, β = 1−PM

PM
(1− α)

}
, which is the end point of

the ray Ω
(
λ̂∗

)
, and the dashed line in Figure 5 represents all such end points for 0 ≤ λ̂∗ ≤ 1;

(iii) V (1+) =
{
(α, β)

∣∣α > 1− µS

Π̂(1)
, β = 1−PM

PM
(1− α)

}
, which is the bottom boundary of the

shaded region in Figure 5. Corollary 2 summarizes the equilibria of the boundary cases.

Corollary 2. Suppose the platform provides the inspection service (PM > 0).

(i) If (α, β) ∈ Ω(0), the seller chooses to sell with price π∗(λ) = Π̂(0) for λ ∈ [0, 1].

(ii) If (α, β) = V
(
λ̂∗

)
, there exist multiple equilibria. Among these equilibria, the seller earns

the same expected revenue for λ ∈ [0, 1].

(iii) If (α, β) ∈ V (1+), the seller will not sell through the platform with π∗(λ) = ∞ for λ ∈ [0, 1].

For (α, β) = V
(
λ̂∗

)
, the unique equilibrium identified by Theorem 1, in which π∗(λ) = ∞ for

λ < λ̂∗ and π∗(λ) = π̂∗ = Π̂
(
λ̂∗

)
for λ ≥ λ̂∗, is in the set of equilibria in part 2 of Corollary

2. We select this equilibrium as the refined equilibrium for (α, β) = V
(
λ̂∗

)
to facilitate the

description of the optimal contract in §5.

4.2 Effect of The Inspection Service on The Seller’s Decision

What is the impact of the platform’s inspection on the seller’s decision? To answer this research

question in §1, we analyze the case without the inspection service, and compare it with our base

model with the inspection. After the buyer purchases the product, without the inspection, the

seller directly sends the product to the buyer (for example, see ebay.com and taobao.com).

This means PM = 0 and c = 0 in our model. Note that the commission fraction α is the only

contract parameter in this case.

Proposition 1 summarizes the equilibrium result for the case without the platform’s in-

spection. Define Π̌
(
λ̌
)
=

µB

∫ λ̌
0 xf(x)dx

F(λ̌)
for 0 < λ̌ ≤ 1 and Π̌(0) = lim

λ̌→0+
Π̌
(
λ̌
)
= 0. Define

λ̌∗ = max
{
λ̌
∣∣(1− α)Π̌

(
λ̌
)
≥ λ̌µS , 0 ≤ λ̌ ≤ 1

}
.

Proposition 1. If the platform does not provide the inspection service (PM = 0), there exists

a unique pure-strategy perfect Bayesian equilibrium that Pareto dominates other equilibria from

the seller’s point of view. We have the following results in this equilibrium.
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The seller’s pricing decision is

π∗(λ) =

{
π̌∗ ≜ Π̌

(
λ̌∗) , if λ ≤ λ̌∗;

∞, if λ > λ̌∗.

The buyer’s purchase decision is

I∗(π) =


I
(
E[λ|π] ≥ π

µB

)
, if 0 < π < π̌∗;

1, if π = π̌∗;

0, if π̌∗ < π ≤ µB.

The buyer’s beliefs m∗(·|π) are determined as follows:

(i) If 0 < π < π̌∗, then m∗(x|π) is arbitrary.
(ii) If π = π̌∗, then

m∗(x|π) =

{
f(x)

F(λ̌∗)
, if x ≤ λ̌∗;

0, if x > λ̌∗.

(iii) If π̌∗ < π ≤ µB, then m∗(x|π) satisfies E[λ|π] =
∫ 1
0 xm∗(x|π)dx < π

µB
.

If the platform does not inspect the product, then the low-type seller with λ ∈
[
0, λ̌∗], who

likely holds a counterfeit product, chooses to sell the product through the platform in the

equilibrium. This is because for the low-type seller with a small λ, it is easy to earn a revenue

that matches his expected reservation price λµS . This phenomenon is similar to the classical

“adverse selection”. That is, the quality of goods traded in a market can decay in the presence

of information asymmetry (Akerlof, 1970). In contrast to Akerlof (1970), who only considers

discrete quality levels, the seller’s product authenticity level λ is continuous in our model. It

is worth noting that only the low-type seller sells his product in Proposition 1, implying that

without the inspection service, there is a high chance for the buyer to receive a counterfeit

product. This is not equivalent to only counterfeits are sold on the platform. Our result is

consistent with the observations in §1.

Recall from Theorem 1 that if the platform provides the inspection service and uses an

appropriate contract (α, β), only the high-type seller sells his product through the platform,

which is opposite to the result in Proposition 1. This is because without the inspection service,

the platform screens the seller only through the commission fraction α. In contrast, with the

inspection service, the platform can screen the seller with an additional contract parameter

(penalty fraction β). If the platform uses a contract (α, β) in the dotted region of Figure 5,

Theorem 1 shows that the seller with a low type cannot earn a revenue matching his expected

reservation price and chooses not to sell. As the product authenticity level on the platform

improves, the buyer is willing to pay a higher price, which attracts a higher-type seller whose
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expected reservation price is higher. This increases the authenticity level and selling price even

further, thus attracting the seller with an even higher type. Comparing Theorem 1 and Propo-

sition 1 shows that the effect of the inspection service is beyond merely detecting counterfeit

products. It also improves product authenticity by altering the seller’s equilibrium decision.

The above comparison implies that the effect of the inspection service may be larger than

one would expect. Specifically, Babich and Tang (2012) show that even with a sufficiently-

high inspection capability, the seller cannot be completely deterred from product adulteration

in a moral hazard setting. In contrast, in a signaling setting, we find that the inspection

can completely reverse the seller’s decision even with a low inspection capability. Given that

the inspection service is largely missing from leading C2C e-commerce platforms, our results

suggest that the benefit of inspection in improving product authenticity may be underestimated

in practice.

Furthermore, if no inspection service is provided, the low-type seller with λ ∈
[
0, λ̌∗] earns

more than his expected reservation price, which leads to the following corollary.

Corollary 3. If the platform does not provide the inspection service (PM = 0), it has to pay

information rent to the seller.

Note that the information rent determines how the revenue is distributed between the platform

and the seller. §5.1 investigates the effect of the inspection service on the platform in terms of

the information rent and compares it with Corollary 3.

5 The First Stage: Optimal Contract

We first analyze how the platform’s contract parameters with the inspection service affect the

seller’s expected revenue in §5.1, and then identify the platform’s optimal contract in §5.2.

5.1 Effect of The Contract Parameters on The Seller’s Revenue

Theorem 1 and Corollary 2 show that in the second-stage equilibrium generated by any contract

(α, β) ∈ Ω
(
λ̂∗

)
∪V

(
λ̂∗

)
, the seller with λ ≥ λ̂∗ chooses to sell his product through the platform.

However, different contracts lead to different expected revenues of the seller. The following

proposition analyzes how the platform’s contract parameters (α, β) ∈ Ω
(
λ̂∗

)
∪ V

(
λ̂∗

)
affect

the seller’s expected revenue R∗
S(λ) = RS (π∗(λ);λ, I∗) in the second-stage equilibrium.
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Proposition 2. If the platform provides the inspection service (PM > 0), then we have the

following results.

1. Given λ̂∗ ∈ [0, 1), as α decreases and β increases along the ray Ω
(
λ̂∗

)
, the seller’s expected

revenue R∗
S(λ) in the second-stage equilibrium increases for λ ∈

[
λ̂∗, 1

]
.

2. Given λ̂∗ ∈ [0, 1] and the contract (α, β) = V
(
λ̂∗

)
, the seller’s expected revenue R∗

S(λ) in

the second-stage equilibrium equals his expected reservation price λµS for λ ∈
[
λ̂∗, 1

]
.

Proposition 2 shows that the platform with the inspection service can alter the seller’s expected

revenue R∗
S(λ) in the second-stage equilibrium by adjusting the contract parameters α and β.

Specifically, as α decreases and β increases along the ray Ω
(
λ̂∗

)
in Figure 5, the high-type

seller with λ ∈
[
λ̂∗, 1

]
earns more revenue in the equilibrium. Moreover, if the platform adopts

the contract (α, β) = V
(
λ̂∗

)
, which corresponds to the end point of the ray Ω

(
λ̂∗

)
in Figure

5, the seller’s expected revenue equals his expected reservation price regardless of λ.

Corollary 4. If the platform provides the inspection service (PM > 0), the seller’s information

rent is eliminated under the contract (α, β) = V
(
λ̂∗

)
.

In contrast to Corollary 3, Corollary 4 shows that the inspection service is a useful tool for

the platform to eliminate the seller’s information rent. Moreover, we can easily prove that

the inspection service can increase the total revenue of the platform and the seller. Therefore,

by providing the inspection service, the platform can generate more revenue for itself through

increasing the total “pie” and decreasing the share of the seller. This may explain why some

platforms begin to offer the inspection service in practice. For example, eBay recently starts to

inspect sneakers, watches, and handbags from its sellers (Holt, 2020).

With multiple seller types, the literature of contract design considers a menu of contracts to

extract the system profit and reduce the information rent (Baron and Myerson, 1982). However,

we consider a single contract (α, β) for all the seller types because it is impractical for the

platform to choose continuous α and β for different seller types in practice (see StockX and

Goat). In contrast to the literature, by offering only a single contract for all the seller types,

our platform can eliminate the seller’s information rent if (α, β) = V
(
λ̂∗

)
.

5.2 Platform’s Optimal Contract

Anticipating the equilibrium of the second-stage signaling game given each contract, we design

the optimal contract of the platform. Recall from Theorem 1 and Corollary 2 that the con-

tracts (α, β) ∈ Ω
(
λ̂∗

)
∪ V

(
λ̂∗

)
lead to the equilibrium in which the seller with λ ∈

[
λ̂∗, 1

]
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chooses to sell. For a given threshold λ̂∗ of the seller type, we first find the optimal contract(
α∗

(
λ̂∗

)
, β∗

(
λ̂∗

))
in Ω

(
λ̂∗

)
∪ V

(
λ̂∗

)
in Figure 5. Then, we identify the optimal threshold

λ̂∗∗ for the platform.

We first find the optimal contract
(
α∗

(
λ̂∗

)
, β∗

(
λ̂∗

))
for a given threshold λ̂∗ such that

the platform’s expected profit is maximized. To derive the platform’s expected profit, we first

consider the total expected profit of both the platform and the seller. In the equilibrium given

λ̂∗, the platform and the seller earn a total revenue of Π̂
(
λ̂∗

)
(see Theorem 1) if the seller’s

product passes the inspection, which happens with probability 1 − PM + PMλ. On the other

hand, the platform incurs the external failure loss ℓ if the buyer finds that the product that passes

the platform’s inspection is a counterfeit, which happens with probability (1 − λ)(1 − PM )PB

(see Figure 1). Moreover, the platform incurs the inspection cost c for each product inspection.

Thus, in the equilibrium with threshold λ̂∗, the total expected profit of both the platform and

the seller is
∫ 1
λ̂∗

[
(1− PM + PMx)Π̂

(
λ̂∗

)
− (1− x)(1− PM )PBℓ− c

]
f(x)dx. Note that (α, β)

do not affect the total expected profit, but determine how the total profit is distributed between

the platform and the seller.

According to Proposition 2, as α decreases and β increases along the ray Ω
(
λ̂∗

)
in Figure

5, the revenue of the seller with λ ∈
[
λ̂∗, 1

]
increases. Since the total expected profit is fixed

given (α, β) ∈ Ω
(
λ̂∗

)
, the platform’s expected profit decreases. So, the platform’s expected

profit is the largest at the end point (α, β) = V
(
λ̂∗

)
in Figure 5. That is, given λ̂∗ ∈ [0, 1], the

optimal contract is
(
α∗

(
λ̂∗

)
, β∗

(
λ̂∗

))
, where

α∗
(
λ̂∗

)
= 1− µS

Π̂
(
λ̂∗

) , (5)

β∗
(
λ̂∗

)
=

(1− PM )µS

PM Π̂
(
λ̂∗

) . (6)

Next, we identify the optimal threshold λ̂∗∗ for the platform. According to Proposition 2, the

seller’s expected revenue is equal to his expected reservation price under the contract (α, β) =

V
(
λ̂∗

)
. Thus, the platform’s expected profit RM

(
λ̂∗

)
equals the two parties’ total expected

profit minus the seller’s expected reservation price. That is, RM

(
λ̂∗

)
=

∫ 1
λ̂∗

[
(1− PM + PMx)Π̂

(
λ̂∗

)
−(1− x)(1− PM )PBℓ− c− xµS ] f(x)dx. Substituting Π̂

(
λ̂∗

)
in (3) into the expression of

RM

(
λ̂∗

)
, we obtain Lemma 4.

Lemma 4. Under the contract (α, β) = V
(
λ̂∗

)
, the platform’s expected profit is

RM

(
λ̂∗

)
=

∫ 1

λ̂∗
[x(µB − µS)− (1− x)(1− PM )PBℓ− c]f(x)dx. (7)
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Lemma 4 shows that the platform’s expected profit equals the gap of the expected reservation

prices between the buyer and the seller minus the expected external failure loss and the inspec-

tion cost. Since a higher seller type results in a larger gap of the expected reservation prices and

a smaller expected external failure loss, the platform prefers the seller with a higher type. To

maximize its expected profit RM

(
λ̂∗

)
, the platform should choose a proper λ̂∗ in (7). Theorem

2 determines the optimal threshold λ̂∗∗ for the platform.

Theorem 2. (Optimal contract of the platform) If the platform provides the inspec-

tion service (PM > 0), the platform’s optimal contract is
(
α∗

(
λ̂∗∗

)
, β∗

(
λ̂∗∗

))
, where λ̂∗∗ =

(1−PM )PBℓ+c
(1−PM )PBℓ+µB−µS

. Furthermore, the platform’s optimal expected profit is R∗
M = RM

(
λ̂∗∗

)
.

Interestingly, the optimal threshold λ̂∗∗ is independent of the distribution F (·) of the seller type

λ. This is appealing because the distribution F (·) may not be accurately estimated in practice.

Regardless of the distribution F (·), the platform should adopt a contract to attract the seller

with λ in the same set
[
λ̂∗∗, 1

]
.

Since the contract in Theorem 2 is optimal for the platform, we have the following corollary.

Corollary 5. Any contract with β < 1−PM
PM

(1 − α) (the bottom blank triangle of Figure 5) is

strictly dominated by the optimal contract (α∗, β∗) = V
(
λ̂∗∗

)
for the platform.

Some platforms, such as StockX and Goat, claim that their customers will receive 100%

authentic products. To ensure that, the platform needs to have a perfect inspection service

with PM = 1. In this case, the platform’s optimal contract is given in the following corollary.

Corollary 6. (No penalty for perfect inspection) If the platform provides a perfect in-

spection service (PM = 1), then λ̂∗∗ = c
µB−µS

, α∗ = 1− µS
µB

, β∗ = 0, and Π̂
(
λ̂∗∗

)
= µB.

Corollary 6 shows that the platform should remove the penalty if it has the perfect inspection

service. This result is interesting and can be explained as follows. If the inspection service

is perfect, an external failure will not happen. In this case, it is optimal for the platform

to remove the penalty completely by setting β∗ = 0 such that it can attract as many seller

types as possible. This benefits the platform because even the seller with low λ can potentially

contribute to the platform’s profit if his product turns out to be authentic. Nevertheless, the

seller with λ < λ̂∗∗ = c
µB−µS

is still rejected by the platform. This is because the expected

revenue generated from such a low seller type cannot cover the platform’s inspection cost.
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6 Sensitivity Analysis

We now analyze how market conditions influence the equilibrium results under the platform’s

optimal contract, and answer our second research question in §1. Specifically, we perform

sensitivity analysis on the distribution of λ and the platform’s inspection capability PM in §6.1

and §6.2 respectively. We conduct sensitivity analysis on other parameters in Appendix A.2.

6.1 Sensitivity to The Seller-Type Distribution

Although Theorem 2 shows that the optimal threshold λ̂∗∗ is independent of the seller-type

distribution F (·), the other equilibrium results under the platform’s optimal contract depend on

the distribution. Proposition 3 describes how the characteristics of F (·) affect these equilibrium

results. Consider markets 1 and 2 with seller-type distributions F1(·) and F2(·) respectively.

Proposition 3. (Sensitivity to the seller-type distribution)

1. The platform’s optimal expected profit can be written as R∗
M = (µB−µS+(1−PM )PBℓ)

∫ 1
λ̂∗∗ F̄ (x)dx.

Thus, R∗
M is larger in market 1 than in market 2 if and only if

∫ 1

λ̂∗∗
F̄1(x)dx ≥

∫ 1

λ̂∗∗
F̄2(x)dx. (8)

2. The optimal commission fraction α∗ is larger, the optimal penalty fraction β∗ is smaller, and

the equilibrium price Π̂
(
λ̂∗∗

)
is larger in market 1 than in market 2 if and only if

∫ 1

λ̂∗∗ F̄1(x)dx

F̄1

(
λ̂∗∗

) ≥
∫ 1

λ̂∗∗ F̄2(x)dx

F̄2

(
λ̂∗∗

) . (9)

To satisfy (8), it is sufficient to have F̄1(x) ≥ F̄2(x) for all x ∈ [0, 1] (that is, F1(·) is stochastically

larger than F2(·)). According to the discussion after Lemma 4, the platform earns more profit

from the seller with a larger λ. Therefore, it is intuitive that the platform generates more profit

in the market with a stochastically larger distribution.

According to part 1 of Proposition 3, the platform’s optimal expected profit is proportional to∫ 1
λ̂∗∗ F̄ (x)dx. Since the seller chooses to sell his product with probability F̄

(
λ̂∗∗

)
, the platform

generates an expected profit proportional to
∫ 1
λ̂∗∗ F̄ (x)dx

/
F̄
(
λ̂∗∗

)
conditioned on the seller

chooses to sell. Note that it is possible for two distributions F1(·) and F2(·) to satisfy (8) but

not (9) (see the discussion after the proof of Proposition 3 in Appendix C). Therefore, a larger

expected profit does not imply a larger commission fraction or a higher price in equilibrium.
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6.2 Sensitivity to Inspection Capability PM

According to Proposition 2, under the platform’s optimal contract, the seller’s expected rev-

enue equals his expected reservation price λµS , which does not depend on the inspection ca-

pability PM . Theorem 3 shows how the other equilibrium results change with PM . Define

λ† = (1−PM )PBℓ
(1−PM )PBℓ+µB−µS

, ξ = F̄
(
λ̂∗∗

)
=

∫ 1
λ̂∗∗ f(x)dx, and η =

∫ 1
λ̂∗∗ xf(x)dx.

Theorem 3. (Sensitivity to PM)

1. The optimal threshold λ̂∗∗ decreases with PM . In contrast, the equilibrium price Π̂
(
λ̂∗∗

)
increases with PM if and only if

λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
≤ (ξ − η)η

η − λ̂∗∗ξ
. (10)

2. The platform’s optimal expected profit R∗
M increases with PM . In contrast, the optimal

commission fraction α∗ increases with PM if and only if (10) holds. The optimal penalty

fraction β∗ decreases with PM if and only if

λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
≤ P 2

Mη2 + (1− P 2
M )ξη

(1− PM )PM

(
η − λ̂∗∗ξ

) . (11)

As the platform’s inspection capability PM increases, the seller faces a higher risk of paying the

penalty. Intuitively, one may think that the seller is less likely to sell his product through the

platform. However, part 1 of Theorem 3 shows the opposite result: λ̂∗∗ is decreasing in PM ,

implying that the seller is more likely to sell through the platform. Since it is more likely to

screen out a counterfeit product as PM increases, the platform optimizes the contract to induce

a lower threshold λ̂∗∗ of the seller type to increase the probability of a successful transaction.

Part 1 of Theorem 3 shows that the equilibrium price Π̂
(
λ̂∗∗

)
increases with PM if and only

if (10) holds. To understand this, define input quality qI and output quality qO as follows:

qI =

∫ 1

λ̂∗∗ xf(x)dx

F̄
(
λ̂∗∗

) , (12)

qO =

∫ 1

λ̂∗∗ xf(x)dx∫ 1

λ̂∗∗(1− PM + PMx)f(x)dx
=

qI

1− PM + PMqI
. (13)

The input quality qI represents the probability of receiving an authentic product from the

seller by the platform before its inspection. The output quality qO represents the probability

of sending an authentic product to the buyer by the platform after its inspection. Note that

qI ≤ qO. If PM = 0, then qO = qI ; if PM = 1, then qO = 1.

On the one hand, since the optimal threshold λ̂∗∗ decreases with PM , we know from (12)
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that qI becomes lower as PM increases. On the other hand, a counterfeit product is more

likely to be screened out as PM increases. If (10) holds, the positive effect of the improved

inspection capability dominates the negative effect of the lower input quality. In that case, the

output quality qO improves as the inspection capability PM increases. According to (3), the

equilibrium price Π̂
(
λ̂∗∗

)
= µBq

O. Thus, Π̂
(
λ̂∗∗

)
increases with PM under condition (10).

Part 2 of Theorem 3 shows that the platform generates more profit if its inspection capability

PM increases. This may sound intuitive, but in fact there are several drivers for this result. First,

both the equilibrium price and the commission fraction increase with PM under condition (10),

thus the platform earns more commission. Second, since the optimal threshold λ̂∗∗ decreases

with PM , the seller is more likely to sell through the platform. Third, it becomes less likely

to have an external failure if PM increases, and thus the platform is less likely to suffer from

the external failure loss. In summary, the combination of these three drivers implies that the

platform’s expected profit increases with PM .

Part 2 of Theorem 3 also shows that the optimal commission fraction α∗ and penalty frac-

tion β∗ are not always monotonic in PM and the monotonicity is guaranteed by conditions (10)

and (11) respectively. Under these conditions, the platform should adjust the contract param-

eters accordingly if its inspection capability increases. Specifically, as PM increases to 100%,

α∗ increases to its upper bound 1 − µS
µB

and β∗ reduces to 0 (see Corollary 6). We provide

the following numerical examples to illustrate how conditions (10) and (11) can be satisfied.

Example 1 gives a wide range of distributions that satisfy the conditions.

Example 1. Consider the seller type λ follows a Beta distribution B(1, 2), B(2, 1), B(2, 2) or

B(0.5, 0.5), with PB = 0.2, ℓ = 3, c = 0.2, µS = 5, and µB = 10. Figure 6(a) shows the

p.d.f. of each distribution above. Figures 6(b) and (c) show that the platform’s optimal contract

parameters α∗ and β∗, respectively, are monotonic in the inspection capability PM .
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Figure 6: The impact of PM on the platform’s optimal contract parameters

In contrast, if conditions (10) and (11) are violated, the optimal contract parameters are no

longer monotonic in PM . We present such an example below.
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Example 2. Consider the p.d.f. of the seller type f(x) = φ(x,0.25,0.012)+1
2 , where φ

(
x, 0.25, 0.012

)
is the p.d.f. of a truncated normal distribution on [0, 1] with mean 0.25 and standard deviation

0.01. We set PB = 0.2, ℓ = 10, c = 0.2, µS = 6, and µB = 10. The density is 20.45 at x = 0.25,

which violates conditions (10) and (11). Figures 7(a) and (b) show that the platform’s optimal

contract parameters α∗ and β∗, respectively, are not monotonic in the inspection capability PM .
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Figure 7: The impact of PM on the platform’s optimal contract parameters when conditions
(10) and (11) are violated

In summary, α∗ increases but β∗ decreases as PM increases under some mild conditions (see

Figure 6). However, if the density of a certain type is high as in Example 2, then α∗ and β∗

may not be monotonic in PM (see Figure 7). Therefore, the platform should pay close attention

to the seller-type distribution when choosing the contract parameters.

7 A Model with Two Seller Types

Sellers may know whether their products are authentic when product sources are clear. To

investigate such a setting, we consider a case in which λ is either 1 or 0 such that the seller is

certain about his product authenticity in this section. Comparing this case with our base model,

where λ is continuous, allows us to investigate the impact of the seller’s uncertainty about his

product authenticity on equilibrium results. This will answer our third research question in §1.

In this section, we assume that λ is either 1 or 0, which means the seller knows that his

product is authentic (type 1) or counterfeit (type 0) respectively. Again, λ is the seller’s private

information. The platform and the buyer have a common prior belief about λ, which is a discrete

probability distribution: P (λ = 1) = w and P (λ = 0) = 1−w. The rest of the setting is the same

as the base model. Note that in our base model the buyer has two “layers” of uncertainty about

the product authenticity as she has a belief about λ, which itself is a probability of the product

authenticity. In contrast, in this section, the buyer has only one layer of uncertainty about the

product authenticity because λ = 1 or 0 completely reveals the product authenticity. Theorem
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4 summarizes the equilibrium results if the seller is certain about his product authenticity. The

definitions of Ω(0), Ω(1), Ω (1+), Ω̃, and V (1) are provided in Appendix C.

Theorem 4. Suppose the seller knows the product authenticity (λ = 1 or 0) and the platform

provides the inspection service (PM > 0).

1. Under a contract (α, β) ∈ Ω(1), only the type-1 seller chooses to sell through the platform

with price µB. Under a contract (α, β) ∈ Ω(0), the seller chooses to sell through the platform

with price µBw/(1−PM +PMw) regardless of his type. Under a contract (α, β) ∈ Ω (1+)∪ Ω̃,

the seller does not sell through the platform.

2. The set of optimal contracts is V (1), in which only the type-1 seller chooses to sell through

the platform with price µB. The platform’s expected profit is w(µB − µS − c).

Figure 8 illustrates the seller’s decision in the second-stage signaling game for different contracts.

In the upper-left region Ω(1) where α is small and β is large, only the type-1 seller chooses to

sell. In the lower-left region Ω(0) where both α and β are small, both seller types choose to

sell. In the upper-right region Ω(1+) and lower-right region Ω̃, the seller does not sell. Part 2

of Theorem 4 shows that it is optimal for the platform to adopt a contract in V (1) where the

penalty fraction β is large. This screens out the type-0 seller with a counterfeit and only the

type-1 seller chooses to sell (see Figure 8).

Figure 8: The seller’s decision in the signaling game when he knows the product authenticity

Theorem 4 shows that the inspection service still incentivizes the high-type (type-1) seller

to sell as long as the platform chooses the commission and penalty fractions carefully. However,

other results are different from our base model. For example, if the seller knows the product

authenticity, an external failure would not happen because only the type-1 seller chooses to sell

under the platform’s optimal contracts. Interestingly, this result holds for any positive platform’s

inspection capability. So, the platform can consider adopting the inspection service because even
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a low inspection capability would eliminate external failures with a carefully designed contract.

In contrast, in our base model, the platform may receive a counterfeit from the seller who is not

certain about the product authenticity, and thus an external failure may happen, which reflects

the reality of the second-hand market of collectible goods mentioned in §1.

Theorem 4 also generates different insights from our base model. Firstly, in our base model

(see Theorem 3), the platform has an incentive to improve its inspection capability (Snow, 2020)

as it can increase the platform’s expected profit. In contrast, if the seller knows the product

authenticity (see Theorem 4), the platform would not have an incentive to enhance its inspection

capability because it does not impact the platform’s expected profit. Secondly, in our base

model (see Theorem 3), the optimal commission and penalty fractions can be either monotonic

or non-monotonic in the inspection capability. The platform should adjust the commission and

penalty fractions accordingly if its inspection capability changes. In contrast, if the seller knows

the product authenticity (see Figure 8), the optimal commission fraction is independent of its

inspection capability (α∗ = 1 − µS/µB). Therefore, the seller-type distribution (continuous or

discrete) plays an important role in generating different insights.

8 Conclusion

We study a C2C platform functioning as a marketplace that provides an inspection service.

Selling a product through the platform, a seller is uncertain about the product authenticity. The

seller is characterized by his type, representing the probability of his product being authentic.

Compared to the seller, a buyer has even less information about the product authenticity. Before

the buyer purchases the product, she obtains a signal of the product authenticity from its selling

price. The platform’s inspection service helps to detect whether the product is counterfeit with

a probability. We develop a two-stage game-theoretical model capturing the interactions among

the platform, the seller, and the buyer. In the first stage of the game, the platform designs a

contract determining a commission fraction and a penalty fraction. In the second stage, the

seller first decides whether to sell the product through the platform by setting its price. Given

the price, the buyer then decides whether to purchase the product. Our model provides guidance

and insights into the platform’s contract design and provision of the inspection service.

We have identified the following effects of providing the inspection service. Firstly, even with

a very low inspection capability, the inspection service completely alters the seller’s decision and

improves the product authenticity (see Theorem 1 and Proposition 1). Our results suggest that
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the benefit of inspection service may be underestimated in practice as the service is not widely

available among leading C2C e-commerce platforms. Secondly, with the inspection service, the

platform can influence the seller’s revenue and generate more revenue for itself by adjusting the

commission and penalty fractions, and even eliminate the seller’s information rent despite the

asymmetric information of product authenticity (see Corollaries 3 and 4). Finally, the platform’s

profit increases with its inspection capability (see Theorem 3). This partially explains why some

C2C platforms invest heavily to improve their inspection capability (Snow, 2020). This inherent

incentive for the platform to improve its inspection capability helps combat counterfeits.

To maximize its expected profit, the platform should carefully choose the commission and

penalty fractions (see Theorem 2). Interestingly, a larger platform’s expected profit does not

imply a larger commission fraction or a higher price in equilibrium (see Proposition 3). Under

some mild conditions, the optimal commission fraction increases but the optimal penalty fraction

decreases as the platform’s inspection capability increases (see Theorem 3). This partially

explains why platforms without the inspection service (such as Taobao) usually charge a lower

commission fee than platforms with the inspection service (such as StockX and Goat), where

the commission fraction can be as high as 25%. However, the optimal contract parameters may

not be monotonic in the inspection capability if the density of a certain seller type is high (see

Figure 7). Therefore, the platform should pay attention to the seller-type distribution when

designing the contract. With a perfect inspection capability, the platform can remove the penalty

completely, attracting more sellers who are less confident about their product authenticity (see

Corollary 6). For example, Goat sets a zero penalty fee (see goat.com).

We also analyze a model with two seller types (λ = 1 or 0), which generates different insights

from our base model. Specifically, when the seller knows the product authenticity, the platform

can adopt a contract to screen out the seller with a counterfeit given asymmetric information

of product authenticity (see Theorem 4). Thus, the platform would not receive a counterfeit

and an external failure would not happen. Moreover, the platform’s expected profit and the

optimal commission fraction are independent of the inspection capability. In contrast, in our

base model, the seller who is uncertain about the product authenticity may sell through the

platform, reflecting what happens on platforms selling second-hand collectible goods (such as

StockX, Goat, and Poizon). Moreover, the platform’s expected profit and the optimal contract

parameters in our base model depend on the inspection capability.

Appendix B analyzes two extensions of our model. The first extension assumes that the
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buyer has a positive reservation price for a counterfeit. The second extension considers that the

buyer has a private reservation price for an authentic product. Our main results continue to hold

under the two extensions. Since our paper is the first to analytically investigate C2C platforms

providing the inspection service, more future research is possible. Firstly, it may be interesting

to consider a rating system on the seller’s product authenticity, where the belief about the seller

type is updated dynamically over time. Secondly, one may endogenize the platform’s inspection

capability to investigate its incentive to manipulate the inspection result. Thirdly, in the second

stage, considering the bargaining between the seller and the buyer, or the buyer making a price

offer can be interesting.
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Appendix

A Supplementary Results

A.1 Equilibrium Under Contracts with A Small Penalty Fraction β

Proposition 4 summarizes the complete equilibrium result of the signaling game for β < 1−PM

PM
(1 − α).

Denote Π̌
(
λ̌
)
=

µB

∫ λ̌
0

xf(x)dx∫ λ̌
0
(1−PM+PMx)f(x)dx

for 0 < λ̌ ≤ 1 and Π̌(0) = lim
λ̌→0+

Π̌
(
λ̌
)
= 0. Given (α, β), define

λ̌∗ = max
{
λ̌
∣∣A (

λ̌
)
≤ Π̌

(
λ̌
)
, 0 ≤ λ̌ ≤ 1

}
.

Proposition 4. If the platform provides the inspection service (PM > 0), for β < 1−PM

PM
(1 − α), there

exists a unique pure-strategy perfect Bayesian equilibrium that Pareto dominates other equilibria from the
seller’s point of view. We have the following results in this equilibrium.

The seller’s pricing decision and the buyer’s purchase decision are

π∗(λ) =

{
π̌∗ ≜ Π̌

(
λ̌∗) , if λ ≤ λ̌∗;

∞, if λ > λ̌∗;
and I∗(π) =


I (E[λ|π] ≥ q(π)) , if 0 < π < π̌∗;

1, if π = π̌∗;

0, if π̌∗ < π ≤ µB .

The buyer’s beliefs m∗(·|π) are determined as follows:

(i) If 0 < π < π̌∗, then m∗(x|π) is arbitrary.
(ii) If π = π̌∗, then

m∗(x|π) =

{
f(x)

F(λ̌∗)
, if x ≤ λ̌∗;

0, if x > λ̌∗.

(iii) If π̌∗ < π ≤ µB, then m∗(x|π) satisfies E[λ|π] =
∫ 1

0
xm∗(x|π)dx < q(π).

If the penalty fraction is small (that is, β < 1−PM

PM
(1 − α)), the equilibrium of the signaling game with

the platform’s inspection service is similar to that without inspection (see Proposition 1). Specifically,
the seller chooses to sell his product with the same equilibrium price π̌∗ if λ ≤ λ̌∗, but he chooses not
to sell through the platform if λ > λ̌∗. Therefore, only the low-type seller sells his product through the
platform if the penalty fraction is small.

A.2 Sensitivity to Other Parameters

Proposition 5 provides the sensitivity analysis on other parameters.

Proposition 5. (Sensitivity to PB, ℓ, c, µS, and µB)

1. The optimal threshold λ̂∗∗ increases with PB, ℓ, c, and µS, and decreases with µB. The equilibrium

price Π̂
(
λ̂∗∗

)
increases with PB, ℓ, c, and µS, and may increase or decrease with µB.

2. The optimal commission fraction α∗ increases with PB, ℓ, and c, and may increase or decrease with
µS and µB. The optimal penalty fraction β∗ always has the opposite sensitivity results to that of α∗

with respect to PB, ℓ, c, µS, and µB. The platform’s optimal expected profit R∗
M decreases with PB,

ℓ, c, and µS, and increases with µB.

As the buyer’s inspection capability PB increases, an external failure is more likely to happen. The
platform also incurs a larger loss from the external failure as ℓ increases. Moreover, the platform incurs
a larger inspection cost as c increases. Thus, part 1 of Proposition 5 shows that the platform prefers
a higher seller type (λ̂∗∗ increases) as PB , l, or c increases. If µS increases, it is more difficult for the
seller to match his expected reservation price. The seller becomes less likely to sell through the platform,
implying that λ̂∗∗ increases. In contrast, if µB increases, then the seller can charge a higher price and
becomes more likely to sell through the platform, implying that λ̂∗∗ decreases. Note that λ̂∗∗ decreases
as µB increases, causing a lower average authenticity level of the seller. This may lower the equilibrium

price Π̂
(
λ̂∗∗

)
.

Part 2 of Proposition 5 implies that the platform should adjust the commission fraction and the
penalty fraction in the opposite directions as PB , ℓ, c, µS , and µB vary. For example, as social media
becomes more accessible, the buyer’s inspection capability PB or the external failure loss ℓ may increase.
The platform should increase the commission fraction and reduce the penalty fraction accordingly. It
is intuitive that the platform’s profit decreases with PB , ℓ, and c. If µB increases or µS decreases, the
platform, which benefits from the gap between the two reservation prices, earns more as an intermediary.
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B Extensions

B.1 Positive Reservation Price for a Counterfeit

In our base model, the buyer’s reservation price of a counterfeit is 0. In this section, we assume that the
buyer is willing to purchase the counterfeit at a positive price. Specifically, the buyer’s reservation prices
of the authentic product and the counterfeit are µH

B and µL
B , respectively. We assume µH

B > µL
B > 0 and

µH
B − µS > c. The set of the seller’s feasible prices is

[
µL
B , µ

H
B

]
∪ {∞}. The other settings are the same

as that in the base model.
Given price π, the buyer generates a posterior belief m(·|π). The buyer’s expected utility is given as

RB(I;π) = I ·
∫ 1

0

[
x
(
µH
B − π

)
+ (1− x)(1− PM )

(
µL
B − π

)]
m(x|π)dx. The buyer purchases the product

with price π (that is I∗(π) = 1) if and only if RB(1;π) ≥ RB(0;π) = 0, which is equivalent to

E[λ|π] =
∫ 1

0

xm(x|π)dx ≥ q(π) ≜
(1− PM )

(
π − µL

B

)
µH
B − PMπ − (1− PM )µL

B

,

where q(π) can be interpreted as a critical level of the seller’s expected type. It is the lowest expected type
that makes price π acceptable to the buyer. The expected revenue of the seller is given as RS(π;λ, I) =
[(1− PM + PMλ)(1− α)π − (1− λ)PMβπ] I, which is the same as that in the base model. Therefore,

Lemma 2 still holds in this extension. We focus on the equilibrium in which π∗(λ) = ∞ for λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for λ ∈

[
λ̂, 1

]
. Similar to (3), the equilibrium price π̂ has the following upper bound:

π̂ ≤ Π̂
(
λ̂
)
=

µH
B

∫ 1

λ̂
xf(x)dx+ µL

B(1− PM )
∫ 1

λ̂
(1− x)f(x)dx∫ 1

λ̂
(1− PM + PMx)f(x)dx

.

We summarize the equilibrium results in the following theorem. The definitions of Ω
(
λ̂∗

)
and V

(
λ̂∗

)
are placed in Appendix C.

Theorem 5. Suppose the platform provides the inspection service (PM > 0).

1. For (α, β) ∈ Ω
(
λ̂∗

)
, λ̂∗ ∈ (0, 1], there exists a unique pure-strategy perfect Bayesian equilibrium

that Pareto dominates other equilibria from the seller’s point of view. We have the following results
in this equilibrium.

The seller’s pricing decision and the buyer’s purchase decision are

π∗(λ) =

{
∞, if λ < λ̂∗;

π̂∗ ≜ Π̂
(
λ̂∗

)
, if λ ≥ λ̂∗;

and I∗(π) =


I (E[λ|π] ≥ q(π)) , if µL

B ≤ π < π̂∗;

1, if π = π̂∗;

0, if π̂∗ < π ≤ µH
B .

The buyer’s beliefs m∗(·|π) are determined as follows:
(i) If µL

B ≤ π < π̂∗, then m∗(x|π) is arbitrary.
(ii) If π = π̂∗, then

m∗(x|π) =

{
0, if x < λ̂∗;
f(x)

F̄(λ̂∗)
, if x ≥ λ̂∗.

(iii) If π̂∗ < π ≤ µH
B , then m∗(x|π) satisfies E[λ|π] =

∫ 1

0
xm∗(x|π)dx < q(π) =

(1−PM )(π−µL
B)

µH
B−PMπ−(1−PM )µL

B

.

2. If (1− PM )
(
PBℓ− µL

B

)
+ µH

B − µS > 0 , then the platform’s optimal contract (α∗, β∗) is V
(
λ̂∗∗

)
,

where λ̂∗∗ = max{ (1−PM )(PBℓ−µL
B)+c

(1−PM )(PBℓ−µL
B)+µH

B−µS
, 0}. The platform’s optimal expected profit is R∗

M =∫ 1

λ̂∗∗

[
xµH

B + (1− x)(1− PM )µL
B − xµS − (1− x)(1− PM )PBℓ− c

]
f(x)dx.

Note that all the results in Theorem 5 can degenerate to that of the base model if µL
B = 0. However, if

the buyer has a positive reservation price of the counterfeit, the equilibrium price Π̂
(
λ̂∗

)
becomes larger

than that in the base model. Since the buyer is willing to purchase the counterfeit at a positive price, the
seller with low types becomes more valuable from the viewpoint of the platform. It is straightforward to
find that the optimal threshold λ̂∗∗ is lower than that in the base model if µB = µH

B . In other words, the
seller is more likely to sell his product through the platform if the buyer has a positive reservation price
of the counterfeit. If the buyer’s reservation price of the counterfeit µL

B is larger than PBℓ+
c

1−PM
, then

all the seller types in [0, 1] are preferred by the platform. Even the type-0 seller who holds a counterfeit
chooses to sell through the platform in equilibrium.
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B.2 Buyer’s Private Reservation Price

In our base model, the seller’s expected reservation price λµS is his private information because the
platform and the buyer do not know the seller’s type λ. In this section, we consider that the buyer has
a private reservation price µB for the authentic product. The platform and the seller hold a common

belief on µB with p.d.f g(·), c.d.f. G(·), and support
[
µ
B
, µB

]
. To avoid uninteresting equilibria, we

assume µ
B
− µS > c. The buyer’s reservation price of the counterfeit is still 0. We make the following

mild assumption on the distribution of µB : G(·) has an increasing general failure rate, that is, yg(y)
Ḡ(y)

is an increasing function of y. Increasing general failure rate is a common assumption in supply chain
contracting problems. For more information on this assumption, please refer to Lariviere (2006).

The seller’s pricing decision is a function π(λ) : [0, 1] → [0, µB ] ∪ {∞}. Let I(π, µB) : [0, µB ] ×[
µ
B
, µB

]
→ {0, 1} be the buyer’s purchase decision, where I(π, µB) = 1 (respectively, I(π, µB) = 0)

indicates that the buyer with reservation price µB chooses (respectively, refuses) to purchase with price
π. With a little ambiguity on notations, we let I(π) denote the probability of the buyer purchasing the
product with price π. Other assumptions are the same as that in the base model.

Given price π, the buyer generates a posterior belief m(·|π). The expected utility of the buyer

with reservation price µB is given as RB(I;π, µB) = I ·
∫ 1

0
[xµB − (1− PM + PMx)π]m(x|π)dx. The

buyer purchases the product with price π if and only if RB(1;π, µB) ≥ RB(0;π, µB) = 0, which is

equivalent to µB ≥
[
1−PM

E[λ|π] + PM

]
π. Thus, given price π, the buyer purchases the product with prob-

ability I∗(π) = Ḡ
([

1−PM

E[λ|π] + PM

]
π
)
. The expected revenue of the type-λ seller is RS(π;λ, I

∗(π)) =

[(1− PM + PMλ)(1− α)− (1− λ)PMβ]πI∗(π).

We summarize the equilibrium results in the following theorem. The definitions of Ω
(
λ̂∗

)
and V

(
λ̂∗

)
are given in Appendix C. Denote

µ0
B = inf

{
y ∈

[
µ
B
, µB

] ∣∣∣∣yg(y)Ḡ(y)
≥ 1

}
. (14)

Theorem 6. Suppose the platform provides the inspection service (PM > 0).

1. For (α, β) ∈ Ω
(
λ̂∗

)
, λ̂∗ ∈ (0, 1], there exists a unique pure-strategy perfect Bayesian equilibrium

that Pareto dominates other equilibria from the seller’s point of view. We have the following results
in this equilibrium.

The seller’s pricing decision is

π∗(λ) =

 ∞, if λ < λ̂∗;

π̂∗ ≜ Π̂
(
λ̂∗

)
≜

µ0
B

∫ 1
λ̂∗ xf(x)dx∫ 1

λ̂∗ (1−PM+PMx)f(x)dx
, if λ ≥ λ̂∗.

The buyer’s purchase decision is I∗(π) = Ḡ
([

1−PM

E[λ|π] + PM

]
π
)
. In particular, I∗ (π̂∗) = Ḡ

(
µ0
B

)
.

The buyer’s beliefs m∗(·|π) are determined as follows:
(i) If π = π̂∗, then

m∗(x|π) =

{
0, if x < λ̂∗;
f(x)

F̄(λ̂∗)
, if x ≥ λ̂∗.

(ii) If π ̸= π̂∗ and πḠ(π) ≤ π̂∗Ḡ
(
µ0
B

)
, then m∗(x|π) is arbitrary.

(iii) If π ̸= π̂∗ and πḠ(π) > π̂∗Ḡ
(
µ0
B

)
, then m∗(x|π) satisfies

∫ 1

0
xm∗(x|π)dx ≤ (1−PM )π

Ḡ−1(π̂∗Ḡ(µ0
B)/π)−PMπ

.

2. The platform’s optimal contract (α∗, β∗) is V
(
λ̂∗∗

)
, where λ̂∗∗ = (1−PM )PBℓ+c

(1−PM )PBℓ+µ0
B−µS

. The optimal

expected profit of the platform is R∗
M = Ḡ

(
µ0
B

) ∫ 1

λ̂∗∗

[(
µ0
B − µS

)
x− (1− x)(1− PM )PBℓ− c

]
f(x)dx.

The main difference between this extension and the base model is that the seller’s expected revenue is
no longer linear in the price. The seller optimizes his revenue by balancing the price π and the buyer’s
purchase probability I∗(π). The buyer accepts the equilibrium price with probability Ḡ(µ0

B), which
indicates that the buyer purchases the product if and only if her reservation price µB is no smaller than
µ0
B . According to (14), the threshold µ0

B only depends on the distribution of the buyer’s reservation
price. So µ0

B is independent of the distribution of the seller’s type and the inspection capability of the
platform. Moreover, no matter what contract the platform chooses, the seller will always set a price to

attract the buyer with reservation price µB in the same set (that is, µB ∈
[
µ0
B , µB

]
). If µ

B
g
(
µ
B

)
≥ 1,

then µ0
B = µ

B
and the buyer accepts the equilibrium price with probability 1.
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C Proofs

A pure-strategy perfect Bayesian equilibrium in a signaling game is a pair of strategies π∗ and I∗ and
a posterior belief m∗ such that the following three conditions are satisfied (see Gibbons, 1992, Fudenberg
and Tirole, 1991):

Condition 1. Given posterior belief m∗(·|π), the buyer’s decision I∗(π) maximizes her expected utility:

For all π ∈ [0, µB ], I
∗(π) ∈ argmax

I∈{0,1}

∫ 1

0

RB(I;π, x)m
∗(x|π)dx.

Condition 2. Given the buyer’s purchase decision I∗(π), the seller pricing decision π∗(λ) maximizes
his expected revenue:

For all λ ∈ [0, 1], π∗(λ) ∈ argmax
π∈(0,µB ]∪{∞}

RS(π;λ, I
∗(π)).

Condition 3. On-equilibrium belief follows the Bayesian rule:
If π∗(λ0) = π0, then

m∗(λ0|π0) =
f(λ0)∫

Λ(π0)
f(x)dx

,

where Λ(π0) = {λ ∈ [0, 1]|π∗(λ) = π0}.

Proof of Lemma 1. The result immediately follows the discussion before Lemma 1.

Proof of Lemma 2. Given the buyer’s purchase decision I∗(π), if the seller chooses to sell with price
π ∈ (0, µB ], his expected revenue is

RS(π;λ, I
∗(π)) = [(1− PM + PMλ)(1− α)π − (1− λ)PMβπ] I∗(π)

= [(1− PM + PMλ)(1− α)− (1− λ)PMβ]πI∗(π)

= [PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ]πI∗(π).

If the seller chooses not to sell, his expected revenue is RS(∞;λ, I∗(∞)) = λµS . Note that PM (1− α+

β)λ+(1−PM )(1−α)−PMβ > 0 if and only if λ > λ̂ ≜ PMβ−(1−PM )(1−α)
PM (1−α+β) . Since β > 1−PM

PM
(1−α), then

PMβ−(1−PM )(1−α) > 0 and PM (1−α+β) = PM (1−α)+PMβ > PM (1−α)+(1−PM )(1−α) = 1−α ≥ 0.

Therefore, λ̂ > 0.
We analyze the seller’s equilibrium decision by considering the following three cases of different λ.

Case 1: If λ = 0, then PM (1 − α + β)λ + (1 − PM )(1 − α) − PMβ = (1 − PM )(1 − α) − PMβ < 0.
Since we focus on participating equilibria, the seller will adopt a price π that is acceptable to the buyer
in equilibrium (I∗(π) = 1). Moreover, for π ∈ (0, µB ] and I∗(π) = 1, we have RS(π;λ, I

∗(π))|λ=0 =
[(1− PM )(1− α)− PMβ]πI∗(π) = [(1− PM )(1− α)− PMβ]π < 0, which implies that choosing not to
sell is a profitable deviation. Thus, any price π ∈ (0, µB ] satisfying I∗(π) = 1 cannot be an equilibrium
price for the type-0 seller because it violates Condition 2 of the perfect Bayesian equilibrium above.
Therefore, we obtain π∗(λ) = ∞ if λ = 0.

Case 2: If 0 < λ ≤ λ̂, then PM (1−α+β)λ+(1−PM )(1−α)−PMβ ≤ 0. If the seller chooses price π ∈
(0, µB ], then his expected revenue isRS(π;λ, I

∗(π)) = [PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ]πI∗(π)
≤ 0 < λµS = RS(∞;λ, I∗(∞)), which implies that choosing not to sell is a profitable deviation. Thus,

any price π ∈ (0, µB ] cannot be an equilibrium price for 0 < λ ≤ λ̂ because it violates Condition 2.

Therefore, we obtain π∗(λ) = ∞ if 0 < λ ≤ λ̂.

Case 3: If λ̂ < λ ≤ 1, then PM (1 − α + β)λ + (1 − PM )(1 − α) − PMβ > 0. Note that if I∗(π) = 0

for all π ∈ (0, µB ], then the seller chooses not to sell by setting π∗(λ) = ∞ for λ̂ < λ ≤ 1. In the
following, we focus on the case where there exists π ∈ (0, µB ] such that I∗(π) = 1. In this case, we define
π̂ = max{π ∈ (0, µB ]|I∗(π) = 1}, which is the highest price that can be accepted by the buyer. Recall that
the seller’s expected revenue is RS(π;λ, I

∗(π)) = [PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ]πI∗(π) for

π ∈ (0, µB ]. Since PM (1 − α + β)λ + (1 − PM )(1 − α) − PMβ > 0 for λ̂ < λ ≤ 1, the seller’s expected
revenue is increasing in π if I∗(π) = 1. Thus, the optimal price in (0, µB ] is π̂ and

RS(π̂;λ, I
∗(π̂)) = [PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ] π̂.

According to Condition 2, if RS(π̂;λ, I
∗(π̂)) > λµS , then π∗(λ) = π̂. If RS(π̂;λ, I

∗(π̂)) < λµS , then
π∗(λ) = ∞. If RS(π̂;λ, I

∗(π̂)) = λµS , then the seller is indifferent between π∗(λ) = π̂ and π∗(λ) = ∞.
For simplicity of exposition of equilibria, we focus on equilibria in which π∗(λ) = π̂ if RS(π̂;λ, I

∗(π̂)) =
λµS . (If we consider equilibria in which π∗(λ) = ∞ for λ satisfying RS(π̂;λ, I

∗(π̂)) = λµS , then part

1 of Lemma 2 becomes π∗(λ) = ∞ for λ ≤ λ̂ and π∗(λ) = π̂ for λ > λ̂. In this case, the equilibrium
expected revenue of each seller type and expected profit of the platform would not change.) Next, we
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characterize the set of λ such that π∗(λ) = π̂. That is the set of λ such that RS(π̂;λ, I
∗(π̂)) ≥ λµS ,

which is equivalent to Σ(λ) ≥ 0, where

Σ(λ) ≜ RS(π̂;λ, I
∗(π̂))− λµS

= [PM (1− α+ β)π̂ − µS ]λ+ [(1− PM )(1− α)− PMβ] π̂. (15)

Note that Σ(λ) is linear and monotonic in λ. To find the set of λ ∈ (λ̂, 1] such that Σ(λ) ≥ 0, we

evaluate Σ(λ) at the following two end points: λ = λ̂ and λ = 1. For λ = λ̂, we have Σ(λ) =

RS(π̂;λ, I
∗(π̂)) − λµS < 0, because RS(π̂;λ, I

∗(π̂)) = 0 at λ = λ̂. For λ = 1, we have Σ(1) = PM (1 −
α+ β)π̂ − µS + [(1− PM )(1− α)− PMβ] π̂ = (1− α)π̂ − µS .

(i) If Σ(1) ≥ 0, then by (15), we obtain PM (1 − α + β)π̂ − µS ≥ [PMβ − (1− PM )(1− α)] π̂ > 0.
Therefore, Σ(λ) is strictly increasing in λ, and we obtain

RS(π̂;λ, I
∗(π̂)) ≥ λµS ⇐⇒ Σ(λ) ≥ 0 ⇐⇒ λ ≥ λ̂, (16)

where λ̂ = [PMβ−(1−PM )(1−α)]π̂
PM (1−α+β)π̂−µS

and λ̂ < λ̂ ≤ 1. Moreover, λ̂ = [PMβ−(1−PM )(1−α)]π̂
PM (1−α+β)π̂−µS

is equivalent

to π̂ = A
(
λ̂
)
≜ λ̂µS

PM (1−α+β)λ̂+(1−PM )(1−α)−PMβ
.

(ii) If Σ(1) < 0, then Σ(λ) is negative at the two end points λ = λ̂ and λ = 1. Thus, Σ(λ) < 0 for all

λ̂ < λ ≤ 1 due to its monotonicity.

Cases 1-3 analyze the seller’s equilibrium pricing decision for different λ ∈ [0, 1]. Combining the
above three cases, we obtain the following result on the seller’s equilibrium decision. Define π̂ = max{π ∈
(0, µB ]|I∗(π) = 1} if there exists π ∈ (0, µB ] such that I∗(π) = 1; otherwise define π̂ = 0.

(i) If Σ(1) = (1− α)π̂ − µS ≥ 0, then π∗(λ) = ∞ for λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for λ ∈

[
λ̂, 1

]
, where

λ̂ < λ̂ ≤ 1 and π̂ = A
(
λ̂
)
.

(ii) If Σ(1) = (1− α)π̂ − µS < 0, then π∗(λ) = ∞ for λ ∈ [0, 1].

Then Lemma 2 can be obtained immediately.

Proof of Lemma 3. The result immediately follows the discussion before Lemma 3.

Lemma C.1. (All equilibria of the signaling game)
1. For β > 1−PM

PM
(1− α) and α ≤ 1− µS

µB
, there exist multiple equilibria:

(a) For any λ̂ that satisfies λ̂ < λ̂ ≤ 1 and A
(
λ̂
)
≤ Π̂

(
λ̂
)
, there exists a semi pooling

equilibrium in which π∗(λ) = ∞ for λ < λ̂ and π∗(λ) = π̂ = A
(
λ̂
)
for λ ≥ λ̂.

(b) There also exists a pooling equilibrium in which π∗(λ) = ∞ for 0 ≤ λ ≤ 1.
2. For β > 1−PM

PM
(1− α) and α > 1− µS

µB
, there exists a unique equilibrium in which π∗(λ) = ∞

for 0 ≤ λ ≤ 1.

Lemma C.1 summarizes all the equilibria for different contract parameter values. Under a large penalty
fraction β, Lemma C.1 shows that for a small commission fraction (α ≤ 1− µS

µB
), there exist a continuum of

semi pooling equilibria parameterized by λ̂ and a pooling equilibrium. In contrast, for a large commission
fraction (α > 1 − µS

µB
), there exists a unique equilibrium in which all the seller types pool on choosing

not to sell.

Proof of Lemma C.1.
1. We first focus on the semi pooling equilibria in which π∗(λ) = ∞ for λ < λ̂ and π∗(λ) = π̂ for

λ ≥ λ̂. Lemmas 2 and 3 characterize necessary conditions (2) and (3) for a semi pooling equilibrium to

be sustained. In the following, we first characterize the set of λ̂ and π̂ satisfying conditions (2) and (3)

and show this set is non-empty. Then we prove that any pair of λ̂ and π̂ in this set can be supported as
a semi pooling equilibrium by specifying off-equilibrium beliefs appropriately.

Note that λ̂ and π̂ satisfy conditions λ̂ < λ̂ ≤ 1, π̂ = A
(
λ̂
)
, and π̂ ≤ Π̂

(
λ̂
)
according to Lemmas

2 and 3. Equivalently, λ̂ satisfies λ̂ < λ̂ ≤ 1 and A
(
λ̂
)

≤ Π̂
(
λ̂
)
, and π̂ satisfies π̂ = A

(
λ̂
)
. If

β > 1−PM

PM
(1− α) and α ≤ 1− µS

µB
, then λ̂ = PMβ−(1−PM )(1−α)

PM (1−α+β) ∈ (0, 1). Recall that

A
(
λ̂
)
=

λ̂µS

PM (1− α+ β)λ̂+ (1− PM )(1− α)− PMβ
. (17)

Then for λ̂ = 1, we obtain A
(
λ̂
)
= µS

1−α ≤ µB = Π̂
(
λ̂
)
because α ≤ 1 − µS

µB
. Therefore, at least λ̂ = 1

satisfies λ̂ < λ̂ ≤ 1 and A
(
λ̂
)
≤ Π̂

(
λ̂
)
. Then, the set

{
λ̂
∣∣λ̂ < λ̂ ≤ 1, A

(
λ̂
)
≤ Π̂

(
λ̂
)}

is non-empty.
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We next prove that any pair of λ̂ ∈
{
λ̂
∣∣A(

λ̂
)
≤ Π̂

(
λ̂
)
, λ̂ < λ̂ ≤ 1

}
and π̂ = A

(
λ̂
)
can be supported

as an equilibrium by specifying off-equilibrium beliefs appropriately. Specifically, we prove that the seller’s
pricing decision

π∗(λ) =

 ∞, if λ < λ̂;

π̂ = A
(
λ̂
)
, if λ ≥ λ̂.

can be supported as an equilibrium by specifying the following buyer’s decision and beliefs.
The buyer’s purchase decision is

I∗(π) =


I(E[λ|π] ≥ q(π)), if 0 < π < π̂;

1, if π = π̂;

0, if π̂ < π ≤ µB .

(18)

The buyer’s beliefs m∗(·|π) are determined as follows:
(i) If 0 < π < π̂, then m∗(x|π) is arbitrary.
(ii) If π = π̂, then

m∗(x|π) =


0, if x < λ̂;

f(x)

F̄(λ̂)
, if x ≥ λ̂.

(iii) If π̂ < π ≤ µB , then m∗(x|π) satisfies E[λ|π] =
∫ 1

0
xm∗(x|π)dx < q(π).

Now we prove that the above (π∗, I∗,m∗) satisfies Conditions 1–3. First, for π ̸= π̂, it is obvious
that the buyer’s purchase decision I∗(π) is optimal given the off-equilibrium beliefs m∗(·|π) according

to Lemma 1. Note that π̂ = A
(
λ̂
)
≤ Π̂

(
λ̂
)
. Then for π = π̂, the buyer’s purchase decision I∗(π) = 1

is optimal given the on-equilibrium belief because of (3). Moreover, the on-equilibrium belief satisfies
Bayesian rule. Thus, (π∗, I∗,m∗) satisfies Conditions 1 and 3. Finally, we prove that the seller’s decision
maximizes his expected revenue RS(π;λ, I

∗(π)). According to (18), the highest price that can be accepted
by the buyer is π̂. To maximize his expected revenue, the seller would compare RS(π̂;λ, I

∗(π̂)) and his
expected reservation price RS(∞;λ, I∗) = λµS . According to (16), RS(π̂;λ, I

∗(π̂)) ≥ λµS if and only

if λ ≥ λ̂. Thus, the seller with λ ≥ λ̂ chooses to sell with price π∗(λ) = π̂ while the seller with λ < λ̂
refuses to sell. Therefore, (π∗, I∗,m∗) also satisfies Condition 2, which completes the proof.

Lastly, we consider the pooling equilibrium in which π∗(λ) = ∞ for λ ∈ [0, 1]. We can similarly prove
that it can be supported as an equilibrium by specifying the following buyer’s decision and beliefs:
The buyer’s purchase decision is I∗(π) = 0 for 0 < π ≤ µB .

The buyer’s belief m∗(x|π) satisfies E[λ|π] =
∫ 1

0
xm∗(x|π)dx < q(π) for 0 < π ≤ µB .

2. For β > 1−PM

PM
(1− α) and α > 1− µS

µB
, we can prove that there does not exist λ̂ satisfying λ̂ < λ̂ ≤ 1

and A
(
λ̂
)
≤ Π̂

(
λ̂
)
. Recall (17) and (3), and one can easily obtain

dA
(
λ̂
)

dλ̂
=

µS [(1− PM )(1− α)− PMβ][
PM (1− α+ β)λ̂+ (1− PM )(1− α)− PMβ

]2 < 0, (19)

and

dΠ̂
(
λ̂
)

dλ̂
=

µB(1− PM )f
(
λ̂
) ∫ 1

λ̂
(x− λ̂)f(x)dx

[(1− PM )F̄
(
λ̂
)
+ PM

∫ 1

λ̂
xf(x)dx]2

> 0. (20)

Therefore, A
(
λ̂
)
− Π̂

(
λ̂
)
is strictly decreasing in λ̂. Since α > 1 − µS

µB
, we obtain A

(
λ̂
)
− Π̂

(
λ̂
)
=

µS

1−α − µB > 0 for λ̂ = 1. Then, A
(
λ̂
)
− Π̂

(
λ̂
)
> 0 for all λ̂ < λ̂ ≤ 1. As a result, there does not exist λ̂

satisfying λ̂ < λ̂ ≤ 1 and A
(
λ̂
)
≤ Π̂

(
λ̂
)
. Therefore, there does not exist a semi pooling equilibrium if

β > 1−PM

PM
(1− α) and α > 1− µS

µB
. However, the pooling equilibrium in which π∗(λ) = ∞ for λ ∈ [0, 1]

can still be supported as an equilibrium by specifying the buyer’s decision and beliefs given in the proof
of part 1. Therefore, if β > 1−PM

PM
(1 − α) and α > 1 − µS

µB
, there exists a unique pooling equilibrium in

which π∗(λ) = ∞ for λ ∈ [0, 1].

Proof of Theorem 1. Lemma C.1 characterizes all the equilibria. For β > 1−PM

PM
(1 − α) and α ≤

1− µS

µB
, there exist a continuum of semi pooling equilibria and a pooling equilibrium. To select the most
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plausible equilibrium, we apply Pareto dominance. In the following, we first show that any semi pooling
equilibrium, in which the seller with λ ≥ λ̂ chooses to sell, Pareto dominates the pooing equilibrium.

We then show that the semi pooling equilibrium with the equilibrium price Π̂
(
λ̂
)
Pareto dominates the

other semi pooling equilibria.
We first show that any semi pooling equilibrium Pareto dominates the pooing equilibrium. Note

that in the pooling equilibrium where π∗(λ) = ∞ for λ ∈ [0, 1], each seller type obtains his expected
reservation price λµS . We next calculate the seller’s expected revenue in a semi pooling equilibrium, in

which the seller with λ < λ̂ chooses not to sell by setting π∗(λ) = ∞ and the seller with λ ≥ λ̂ chooses

to sell with the same price π∗(λ) = π̂. For λ < λ̂, the seller’s equilibrium expected revenue is λµS . For

λ ≥ λ̂, the seller’s equilibrium expected revenue is

RS (π̂;λ, I∗ (π̂)) = [PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ] π̂. (21)

According to (16), RS(π̂;λ, I
∗(π̂)) ≥ λµS for λ ≥ λ̂. Thus, a semi pooling equilibrium Pareto dominates

the pooing equilibrium in which π∗(λ) = ∞ for λ ∈ [0, 1].

Next, we select an equilibrium among the semi pooling equilibria by Pareto dominance. For λ ≥ λ̂,
we have PM (1 − α + β)λ + (1 − PM )(1 − α) − PMβ ≥ PM (1 − α + β)λ̂ + (1 − PM )(1 − α) − PMβ >

PM (1 − α + β)λ̂ + (1 − PM )(1 − α) − PMβ = 0. That is, the coefficient of π̂ in (21) satisfies PM (1 −
α+ β)λ+ (1− PM )(1− α)− PMβ > 0 for λ ≥ λ̂. Thus, the seller’s equilibrium revenue RS (π̂;λ, I∗ (π̂))
is increasing in π̂. Applying Pareto dominance, we should select the equilibrium with the largest π̂.

Note that π̂ and λ̂ have a one-to-one correspondence π̂ = A
(
λ̂
)
, where A

(
λ̂
)
is strictly decreasing in λ̂

according to (19). Thus, to find the equilibrium with the largest π̂, it is equivalent to find the equilibrium

with the smallest λ̂. Recall from part 1(a) of Lemma C.1 that λ̂ satisfies λ̂ < λ̂ ≤ 1 and A
(
λ̂
)
≤ Π̂

(
λ̂
)
,

so we need to find the smallest λ̂ from the set
{
λ̂
∣∣λ̂ < λ̂ ≤ 1, A

(
λ̂
)
− Π̂

(
λ̂
)
≤ 0

}
. By (19) and (20),

A
(
λ̂
)
− Π̂

(
λ̂
)
is strictly decreasing in λ̂. As λ̂ → λ̂, we obtain lim

λ̂→λ̂
+

[
A
(
λ̂
)
− Π̂

(
λ̂
)]

= +∞, because

lim
λ̂→λ̂

+
A
(
λ̂
)
= +∞ and lim

λ̂→λ̂
+
Π̂
(
λ̂
)
≤ Π̂(1) = µB . For λ̂ = 1, we obtain A

(
λ̂
)
− Π̂

(
λ̂
)
= µS

1−α −µB ≤ 0

because α ≤ 1 − µS

µB
. Denote λ̂∗ as the unique root of A

(
λ̂
)
− Π̂

(
λ̂
)

= 0. Then, the set of λ̂ is{
λ̂
∣∣λ̂ < λ̂ ≤ 1, A

(
λ̂
)
− Π̂

(
λ̂
)
≤ 0

}
=

{
λ̂
∣∣λ̂∗ ≤ λ̂ ≤ 1

}
and the smallest λ̂ in this set is λ̂∗. Therefore,

we should select the equilibrium with λ̂ = λ̂∗ and π̂∗ = A
(
λ̂∗

)
= Π̂

(
λ̂∗

)
. Note that π̂∗ attains the

upper bound Π̂
(
λ̂∗

)
of the equilibrium price in an equilibrium with λ̂ = λ̂∗ (see Lemma 3).

In summary, for β > 1−PM

PM
(1 − α) and α ≤ 1 − µS

µB
, there exists a unique equilibrium that Pareto

dominates other equilibria from the seller’s point of view. In this equilibrium, π∗(λ) = ∞ for λ ∈
[
0, λ̂∗

)
and π∗(λ) = π̂∗ = Π̂

(
λ̂∗

)
for λ ∈

[
λ̂∗, 1

]
, where λ̂∗ is uniquely determined by

A
(
λ̂∗

)
= Π̂

(
λ̂∗

)
⇐⇒ λ̂∗µS

PM (1− α+ β)λ̂∗ + (1− PM )(1− α)− PMβ
= Π̂

(
λ̂∗

)
.

Moreover, λ̂∗ satisfies λ̂∗ > λ̂ = PMβ−(1−PM )(1−α)
PM (1−α+β) > 0 because β > 1−PM

PM
(1 − α). Thus, 0 < λ̂∗ ≤ 1.

The buyer’s decision and beliefs for this equilibrium can be found in the proof of Lemma C.1.
Note that λ̂∗ cannot be written as a closed-form function of α and β, which leads difficulty to de-

rive the optimal contract (α, β) in the first stage of our model. To solve this problem, we identify the set of

(α, β) that induces the equilibrium with λ̂∗ ∈ (0, 1]. That is, Ω
(
λ̂∗

)
=

{
(α, β)

∣∣ λ̂∗µS

PM (1−α+β)λ̂∗+(1−PM )(1−α)−PMβ

= Π̂
(
λ̂∗

)
, β > 1−PM

PM
(1− α), α ≤ 1− µS

µB

}
. In the following, we simplify the formulation of Ω

(
λ̂∗

)
.

For λ̂∗ ∈ (0, 1), λ̂∗µS

PM (1−α+β)λ̂∗+(1−PM )(1−α)−PMβ
= Π̂

(
λ̂∗

)
⇐⇒ β =

(1−PM+PM λ̂∗)(1−α)Π̂(λ̂∗)−λ̂∗µS

(1−λ̂∗)PM Π̂(λ̂∗)
.

Then, βPM

1−PM
=

(1−PM+PM λ̂∗)(1−α)Π̂(λ̂∗)−λ̂∗µS

(1−PM )(1−λ̂∗)Π̂(λ̂∗)
. Moreover,

β >
1− PM

PM
(1− α)

⇐⇒ βPM

1− PM
> 1− α

⇐⇒ (1− PM + PM λ̂∗)(1− α)Π̂
(
λ̂∗

)
− λ̂∗µS > (1− PM )(1− λ̂∗)Π̂

(
λ̂∗

)
(1− α)

⇐⇒ α < 1− µS

Π̂
(
λ̂∗

) ,
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which also guarantees α ≤ 1− µS

µB
because Π̂

(
λ̂∗

)
≤ Π̂(1) = µB . Therefore, the set of (α, β) that induces

the equilibrium with λ̂∗ ∈ (0, 1) is

Ω
(
λ̂∗

)
=

(α, β)

∣∣∣∣α < 1− µS

Π̂
(
λ̂∗

) , β =

(
1− PM + PM λ̂∗

)
(1− α)Π̂

(
λ̂∗

)
− λ̂∗µS(

1− λ̂∗
)
PM Π̂

(
λ̂∗

)
 ,

which is a ray (without its end point) on α-β plane because β is linear in α.

For λ̂∗ = 1, λ̂∗µS

PM (1−α+β)λ̂∗+(1−PM )(1−α)−PMβ
= Π̂

(
λ̂∗

)
for λ̂∗ = 1 ⇐⇒ α = 1 − µS

µB
. Thus, the set of

(α, β) that induces the equilibrium with λ̂∗ = 1 is

Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

µB
, β >

1− PM

PM
(1− α)

}
.

Comment on the belief. The buyer purchases the product with price π if and only if E[λ|π] ≥ q(π)
according to (1), where both E[λ|π] and q(π) are functions of π. Recall that q(π) is the critical level of
the seller’s expected type, which is the lowest expected type such that the price π is acceptable to the
buyer. The blue curve in Figure 9 represents q(π), which is increasing in π. This implies that the buyer
has a higher requirement for the product authenticity as the price increases. The buyer accepts the price
π if and only if the conditional expectation E[λ|π] is above or on the blue curve q(π).

Figure 9: Critical level q(π) and conditional expectation E[λ|π]

In Figure 9, E1[λ|π] and E2[λ|π] are generated by two feasible beliefs. For E1[λ|π] (the solid horizontal

line in Figure 9), the buyer accepts price π if and only if π ≤ Π̂
(
λ̂∗

)
. For E2[λ|π] (the dotted polyline

in Figure 9), the buyer accepts price π if and only if π1 ≤ π ≤ Π̂
(
λ̂∗

)
. In both cases, Π̂

(
λ̂∗

)
is the

highest price acceptable to the buyer. This guarantees that Π̂
(
λ̂∗

)
is the equilibrium price.

Proof of Corollary 1. The result can be immediately obtained from part 2 of Lemma C.1.

Proof of Corollary 2. If β = 1−PM

PM
(1 − α), then the seller’s expected revenue is RS(π;λ, I

∗(π)) =
[(1− PM + PMλ)(1− α)π − (1− λ)PMβπ] I∗(π) = (1−α)λπI∗(π) for π ∈ (0, µB ]. Note that if I∗(π) = 0
for all π ∈ (0, µB ], then the seller chooses not to sell by setting π∗(λ) = ∞ for λ ∈ [0, 1]. So, we next
focus on the case where there exists π ∈ (0, µB ] such that I∗(π) = 1. In this case, we also define
π̂ = max{π ∈ (0, µB ]|I∗(π) = 1}, which is the highest price that can be accepted by the buyer.

(i) If (α, β) ∈ Ω(0), then α < 1− µS

Π̂(0)
. We consider the following three cases.

Case 1: If π̂ < µS

1−α , then RS (π̂;λ, I∗(π̂)) = (1 − α)λπ̂ < λµS = RS(∞;λ, I∗(∞)) for 0 < λ ≤ 1
and RS (π̂;λ, I∗(π̂)) = RS(∞;λ, I∗(∞)) = 0 for λ = 0. Thus, the seller chooses not to sell by setting
π∗(λ) = ∞ for λ ∈ [0, 1]. (If only the type-0 seller chooses to sell, then the equilibrium price is 0. This is
not a participating equilibrium so we do not consider it.) In this equilibrium, each seller type earns his
expected reservation price λµS .
Case 2: If π̂ = µS

1−α , then RS (π̂;λ, I∗(π̂)) = (1− α)λπ̂ = λµS = RS(∞;λ, I∗(∞)) for λ ∈ [0, 1]. In this
case, each seller type is indifferent between selling with price π̂ and not selling with price ∞. Thus, each
seller type also earns his expected reservation price λµS in equilibrium.
Case 3: If π̂ > µS

1−α , then RS (π̂;λ, I∗(π̂)) = (1 − α)λπ̂ > λµS = RS(∞;λ, I∗(∞)) for 0 < λ ≤ 1 and
RS(π̂;λ, I

∗(π̂)) = RS(∞;λ, I∗(∞)) = 0 for λ = 0. For simplicity of exposition of equilibria, we focus
on equilibria in which π∗(λ) = π̂ for λ ∈ [0, 1], where each seller type earns no less than his expected
reservation price λµS .
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According to Pareto dominance, we select Case 3: π̂ > µS

1−α and π∗(λ) = π̂ for λ ∈ [0, 1]. Similar to

(3), we obtain π̂ ≤ Π̂(0). We can prove that any price π̂ satisfying µS

1−α < π̂ ≤ Π̂(0) can be sustained as
an equilibrium price by specifying proper off-equilibrium beliefs. Applying Pareto dominance again, we
choose the equilibrium in which π∗(λ) = Π̂(0) for λ ∈ [0, 1].

(ii) If (α, β) = V
(
λ̂∗

)
for 0 ≤ λ̂∗ ≤ 1, then α = 1 − µS

Π̂(λ̂∗)
. Similar to the proof of part 1, we consider

the following three cases.

Case 1: If π̂ < Π̂
(
λ̂∗

)
, then RS (π̂;λ, I∗ (π̂)) = (1 − α)λπ̂ = µS

Π̂(λ̂∗)
λπ̂ < λµS = RS(∞;λ, I∗(∞)) for

0 < λ ≤ 1 and RS (π̂;λ, I∗(π̂)) = RS(∞;λ, I∗(∞)) = 0 for λ = 0. Thus, the seller chooses not to sell by
setting π∗(λ) = ∞ for λ ∈ [0, 1], where each seller type earns his expected reservation price λµS .

Case 2: If π̂ = Π̂
(
λ̂∗

)
, then RS (π̂;λ, I∗(π̂)) = (1 − α)λπ̂ = µS

Π̂(λ̂∗)
λπ̂ = λµS = RS(∞;λ, I∗(∞)) for

λ ∈ [0, 1]. In this case, each seller type is indifferent between selling with price π̂ = Π̂
(
λ̂∗

)
and not

selling with price ∞. Then, there exist a continuum of equilibria, and the seller earns his expected
reservation price λµS in each equilibrium. Note that the unique equilibrium identified by Theorem 1, in

which π∗(λ) = ∞ for λ < λ̂∗ and π∗(λ) = π̂∗ = Π̂
(
λ̂∗

)
for λ ≥ λ̂∗, is in the set of equilibria.

Case 3: If π̂ > Π̂
(
λ̂∗

)
, then RS (π̂;λ, I∗(π̂)) = (1 − α)λπ̂ = µS

Π̂(λ̂∗)
λπ̂ > λµS = RS(∞;λ, I∗(∞)) for

0 < λ ≤ 1 and RS (π̂;λ, I∗(π̂)) = RS(∞;λ, I∗(∞)) = 0 for λ = 0. Without loss of generality, we focus on
equilibria in which π∗(λ) = π̂ for λ ∈ [0, 1]. Similar to (3), we obtain π̂ ≤ Π̂(0). This contradicts with

π̂ > Π̂
(
λ̂∗

)
because Π̂

(
λ̂∗

)
≥ Π̂(0) for 0 ≤ λ̂∗ ≤ 1 according to (20). Thus, Case 3 is impossible.

Combining the above three cases, there exist multiple equilibria. In each equilibrium, the seller earns
his expected reservation price λµS .

(iii) If (α, β) ∈ V (1+), then α > 1 − µS

Π̂(1)
= 1 − µS

µB
. Since π̂ ≤ µB , we obtain RS (π̂;λ, I∗(π̂)) =

(1 − α)λπ̂ < µS

µB
λπ̂ ≤ λµS for 0 < λ ≤ 1. Thus, the seller chooses not to sell by setting π∗(λ) = ∞ for

λ ∈ [0, 1].

Proof of Proposition 1. We first analyze the buyer’s decision. Given π ∈ (0, µB ] and λ ∈ [0, 1],
the buyer’s utility is RB(I;π, λ) = (λµB − π) I. After observing the price π ∈ (0, µB ], the buyer up-
dates her belief m(·|π) about the seller’s type λ. Thus, the buyer’s expected utility is RB(I;π) =∫ 1

0
RB(I;π, x)m(x|π)dx. The buyer purchases the product (I∗(π) = 1) if and only if RB(1;π) ≥

RB(0;π) = 0, which is equivalent to E[λ|π] =
∫ 1

0
xm(x|π)dx ≥ π

µB
.

Next, similar to the case with the platform’s inspection service, we derive the equilibrium of the
signaling game through the following three steps.
Step 1: Reduce the space of possible equilibira.

For π ∈ (0, µB ], the seller’s expected revenue is RS(π;λ, I
∗(π)) = (1 − α)πI∗(π). For π = ∞, the

seller’s expected revenue is RS(π;λ, I
∗(π)) = λµS . Note that if I∗(π) = 0 for all π ∈ (0, µB ], then the

seller chooses not to sell by setting π∗(λ) = ∞ for λ ∈ [0, 1]. In this equilibrium, each seller type earns
his expected reservation price. We next consider there exists π ∈ (0, µB ] such that I∗(π) = 1 and define
π̌ = max{π ∈ (0, µB ]|I∗(π) = 1}, which is the highest price that can be accepted by the buyer. We
consider the following two cases.
Case 1: If (1 − α)π̌ ≥ µS , then RS (π̌;λ, I∗(π̌)) = (1 − α)π̌ ≥ λµS = RS(∞;λ, I∗(∞)) for λ ∈ [0, 1].
Thus, the seller chooses to sell by setting π∗(λ) = π̌ for λ ∈ [0, 1]. Similar to (3), we obtain π̌ ≤ Π̌(1) =

µB

∫ 1

0
xf(x)dx. We can prove that any price π̌ satisfying µS

1−α ≤ π̌ ≤ Π̌(1) can induce an equilibrium
with π∗(λ) = π̌ for λ ∈ [0, 1] by specifying proper off-equilibrium beliefs.

Case 2: If (1 − α)π̌ < µS , denote λ̌ = (1−α)π̌
µS

< 1. Then, RS (π̌;λ, I∗(π̌)) = (1 − α)π̌ ≥ λµS =

RS(∞;λ, I∗(∞)) for λ ∈ [0, λ̌] and RS (π̌;λ, I∗(π̌)) = (1− α)π̌ < λµS = RS(∞;λ, I∗(∞)) for λ ∈ (λ̌, 1].
Thus, the seller chooses to sell by setting π∗(λ) = π̌ for λ ∈

[
0, λ̌

]
and the seller chooses not to sell

by setting π∗(λ) = ∞ for λ ∈
(
λ̌, 1

]
. Similar to (3), we obtain π̌ ≤ Π̌

(
λ̌
)
=

µB

∫ λ̌
0

xf(x)dx

F(λ̌)
. Therefore,

in an equilibrium in which π∗(λ) = π̌ for λ ∈
[
0, λ̌

]
and π∗(λ) = ∞ for λ ∈

(
λ̌, 1

]
, λ̌ and π̌ satisfy

0 ≤ λ̌ = (1−α)π̌
µS

< 1 and π̌ ≤ Π̌
(
λ̌
)
. Equivalently, λ̌ satisfies 0 ≤ λ̌ < 1 and (1− α)Π̌

(
λ̌
)
≥ λ̌µS , and π̌

satisfies π̌ = λ̌µS

1−α . We can prove that any λ̌ satisfying 0 ≤ λ̌ < 1 and (1− α)Π̌
(
λ̌
)
≥ λ̌µS can lead to an

equilibrium in which π∗(λ) = π̌ = λ̌µS

1−α for λ ∈
[
0, λ̌

]
and π∗(λ) = ∞ for λ ∈

(
λ̌, 1

]
by specifying proper

off-equilibrium beliefs (similar to the proof of Lemma C.1).
Step 2: Find all the equilibria within the reduced space.

Through the analysis in Step 1, we can summarize all the equilibria as follows.

1. If (1− α)Π̌(1) ≥ µS , there exist multiple equilibria:
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(a) For any π̌ satisfying µS

1−α ≤ π̌ ≤ Π̌(1), there exists a pooling equilibrium in which π∗(λ) = π̌
for λ ∈ [0, 1].

(b) For any λ̌ satisfying 0 ≤ λ̌ < 1 and (1 − α)Π̌
(
λ̌
)
≥ λ̌µS , there also exists a semi pooling

equilibrium in which π∗(λ) = π̌ = λ̌µS

1−α for λ ∈
[
0, λ̌

]
and π∗(λ) = ∞ for λ ∈

(
λ̌, 1

]
.

(c) There also exists a pooling equilibrium in which π∗(λ) = ∞ for λ ∈ [0, 1].

2. If (1− α)Π̌(1) < µS , there exist multiple equilibria:

(a) For any λ̌ satisfying 0 ≤ λ̌ < 1 and (1−α)Π̌
(
λ̌
)
≥ λ̌µS , there exists a semi pooling equilibrium

in which π∗(λ) = π̌ = λ̌µS

1−α for λ ∈
[
0, λ̌

]
and π∗(λ) = ∞ for λ ∈

(
λ̌, 1

]
.

(b) There also exists a pooling equilibrium in which π∗(λ) = ∞ for λ ∈ [0, 1].

Step 3: Refine the equilibria by Pareto dominance.
Note that the seller’s expected revenue is increasing in the equilibrium price π̌. According to Pareto

dominance, we select the equilibrium with the largest π̌.

1. If (1 − α)Π̌(1) ≥ µS , we select the equilibrium in which π∗(λ) = π̌∗ = Π̌(1) for λ ∈ [0, 1]. (Note

that Π̌
(
λ̌
)
is strictly increasing in λ̌ because

dΠ̌(λ̌)
dλ̌

= µB

f(λ̌)
[
λ̌F(λ̌)−

∫ λ̌
0

xf(x)dx
]

[F(λ̌)]
2 > 0.)

2. If (1− α)Π̌(1) < µS , we select the equilibrium with the largest π̌. Since π̌ = λ̌µS

1−α , the equilibrium

price π̌ is strictly increasing in λ̌. Thus, it is equivalent to select the equilibrium with the largest
λ̌, that is λ̌∗ = max{λ̌

∣∣(1− α)Π̌
(
λ̌
)
≥ λ̌µS , 0 ≤ λ̌ < 1}. Since (1− α)Π̌

(
λ̌
)
− λ̌µS is a continuous

function of λ̌ and (1−α)Π̌
(
λ̌
)
−λ̌µS < 0 for λ̌ = 1, we obtain that λ̌∗ satisfies (1−α)Π̌

(
λ̌∗) = λ̌∗µS .

Therefore, the equilibrium price π̌∗ satisfies π̌∗ = λ̌∗µS

1−α = Π̌
(
λ̌∗).

Combining the above two cases, for any α ≤ 1, we have λ̌∗ = max
{
λ̌
∣∣(1− α)Π̌

(
λ̌
)
≥ λ̌µS , 0 ≤ λ̌ ≤ 1

}
and π̌∗ = Π̌

(
λ̌∗), which completes the proof of Proposition 1.

Proof of Corollary 3. The result is immediately obtained from the proof of Proposition 1.

Proof of Proposition 2.

1. For (α, β) ∈ Ω
(
λ̂∗

)
and λ̂∗ ∈ [0, 1), if λ ∈ [λ̂∗, 1], then

R∗
S(λ) = (1− PM + PMλ)(1− α)Π̂

(
λ̂∗

)
− (1− λ)PMβΠ̂

(
λ̂∗

)
= (1− PM + PMλ)(1− α)Π̂

(
λ̂∗

)
− (1− λ)

(1− PM + PM λ̂∗)(1− α)Π̂
(
λ̂∗

)
− λ̂∗µS

1− λ̂∗

= (1− α)Π̂
(
λ̂∗

)[
1− PM + PMλ− (1− λ)

1− PM + PM λ̂∗

1− λ̂∗

]
+ (1− λ)

λ̂∗µS

1− λ̂∗
. (22)

The second equality is obtained by the definition of Ω
(
λ̂∗

)
. If λ ≥ λ̂∗, the coefficient of α in (22) satisfies

−Π̂
(
λ̂∗

) [
1− PM + PMλ− (1− λ) 1−PM+PM λ̂∗

1−λ̂∗

]
≤ 0. So the seller’s expected revenue is decreasing in

α, which yields the result.

2. For α = 1− µS

Π̂(λ̂∗)
and β = (1−PM )(1−α)

PM
= (1−PM )µS

PM Π̂(λ̂∗)
, if λ ∈ [λ̂∗, 1], then R∗

S(λ) = (1−PM +PMλ)(1−

α)Π̂
(
λ̂∗

)
− (1− λ)PMβΠ̂

(
λ̂∗

)
= (1− PM + PMλ)µS − (1− λ)(1− PM )µS = λµS .

Proof of Corollary 4. The result immediately follows the discussion before Corollary 4.

Proof of Lemma 4. The result is obtained by substituting Π̂
(
λ̂∗

)
in (3) into RM

(
λ̂∗

)
.

Proof of Theorem 2. To find the platform’s optimal contract, we first show that the contract V
(
λ̂∗∗

)
is optimal within the region β ≥ 1−PM

PM
(1−α), and then prove that all the contracts with β < 1−PM

PM
(1−α)

are strictly dominated by the optimal contract V
(
λ̂∗∗

)
.

Recall that for a given λ̂∗ ∈ [0, 1], the platform’s optimal contract is V
(
λ̂∗∗

)
=

(
α∗

(
λ̂∗

)
, β∗

(
λ̂∗

))
,

which is given by (5) and (6). Now we determine the optimal λ̂∗. By taking the derivative with

respect to λ̂∗, we obtain
dRM(λ̂∗)

dλ̂∗ = −
[
[µB − µS + (1− PM )PBℓ] λ̂

∗ − (1− PM )PBℓ− c
]
f
(
λ̂∗

)
. Note

that
dRM(λ̂∗)

dλ̂∗ is positive for λ̂∗ < (1−PM )PBℓ+c
(1−PM )PBℓ+µB−µS

and negative for λ̂∗ > (1−PM )PBℓ+c
(1−PM )PBℓ+µB−µS

. Thus,
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RM

(
λ̂∗

)
is a unimodal function and attains its maximum at λ̂∗∗ = (1−PM )PBℓ+c

(1−PM )PBℓ+µB−µS
. Therefore, within

the contracts with β ≥ 1−PM

PM
(1− α), the platform’s optimal contract is V

(
λ̂∗∗

)
.

Next, we show that all the contracts with β < 1−PM

PM
(1 − α) are strictly dominated by the contract

V
(
λ̂∗∗

)
. Specifically, we derive an upper bound of the platform’s expected profit for β < 1−PM

PM
(1− α),

then we show this upper bound is smaller than RM

(
λ̂∗∗

)
. Proposition 4 summarizes the equilibrium

for β < 1−PM

PM
(1 − α). In the equilibrium, π∗(λ) = π̌∗ for λ ∈

[
0, λ̌∗] and π∗(λ) = ∞ for λ ∈

(
λ̌∗, 1

]
,

where the equilibrium price π̌∗ = Π̌
(
λ̌∗) =

µB

∫ λ̌∗
0

xf(x)dx∫ λ̌∗
0

(1−PM+PMx)f(x)dx
. Similar to §5.2, the total expected

profit of the platform and the seller is
∫ λ̌∗

0

[
(1− PM + PMx)Π̌

(
λ̌∗)− (1− x)(1− PM )PBℓ− c

]
f(x)dx.

The expected revenue of the seller with type λ ∈
[
0, λ̌∗] in equilibrium is no less than his expected

reservation price λµS . Therefore, given threshold λ̌∗, the platform’s expected profit ŘM

(
λ̌∗) satisfies

ŘM

(
λ̌∗) ≤ R̄M

(
λ̌∗) ≜

∫ λ̌∗

0

[
(1− PM + PMx)Π̌

(
λ̌∗)− (1− x)(1− PM )PBℓ− c− xµS

]
f(x)dx. Substi-

tuting the definition of Π̌
(
λ̌∗), we obtain R̄M

(
λ̌∗) = ∫ λ̌∗

0
[x(µB − µS)− (1− x)(1−PM )PBℓ− c]f(x)dx.

Note that
dR̄M(λ̌∗)

dλ̌∗ =
[
λ̌∗(µB − µS)− (1− λ̌∗)(1− PM )PBℓ− c

]
f
(
λ̌∗), which is negative for λ̌∗ <

λ̂∗∗ = (1−PM )PBℓ+c
(1−PM )PBℓ+µB−µS

and positive for λ̌∗ > λ̂∗∗. Therefore, R̄M

(
λ̌∗) first decreases and then in-

creases with λ̌∗, which yields that R̄M

(
λ̌∗) reaches its maximum at λ̌∗ = 0 or λ̌∗ = 1. For λ̌∗ = 0,

R̄M

(
λ̌∗) = 0 < RM

(
λ̂∗∗

)
; for λ̌∗ = 1, R̄M

(
λ̌∗) = R̄M (1) = RM (0) < RM

(
λ̂∗∗

)
. Therefore, all the

contracts with β < 1−PM

PM
(1− α) are strictly dominated by the optimal contract V

(
λ̂∗∗

)
.

Proof of Corollaries 5 and 6. The results are immediately obtained from the proof of Theorem 2.

Proof of Proposition 3.
1. The expected profit of the platform equals

R∗
M =

∫ 1

λ̂∗∗
[x(µB − µS)− (1− x)(1− PM )PBℓ− c] f(x)dx

= −
∫ 1

λ̂∗∗

[
x [µB − µS + (1− PM )PBℓ]− (1− PM )PBℓ− c

]
dF̄ (x)

= −
[
x [µB − µS + (1− PM )PBℓ]− (1− PM )PBℓ− c

]
F̄ (x)

∣∣∣∣1
λ̂∗∗

+ [µB − µS + (1− PM )PBℓ]

∫ 1

λ̂∗∗
F̄ (x)dx

= [µB − µS + (1− PM )PBℓ]

∫ 1

λ̂∗∗
F̄ (x)dx,

where the third equality is obtained by partial integration formula, and the last equality is obtained by
the definition of λ̂∗∗ in Theorem 2. Then, part 1 of Proposition 3 can be obtained immediately.

2. If we denote γ
(
λ̂∗∗

)
= F̄

(
λ̂∗∗

)/ ∫ 1

λ̂∗∗ xf(x)dx, then Π̂
(
λ̂∗∗

)
= µB

(1−PM )γ(λ̂∗∗)+PM
. Note that

1

γ(λ̂∗∗)
=

∫ 1

λ̂∗∗ xf(x)dx
/
F̄
(
λ̂∗∗

)
= −

∫ 1

λ̂∗∗ xdF̄ (x)
/
F̄
(
λ̂∗∗

)
= −

[
xF̄ (x)

∣∣1
λ̂∗∗ −

∫ 1

λ̂∗∗ F̄ (x)dx
] /

F̄
(
λ̂∗∗

)
=∫ 1

λ̂∗∗ F̄ (x)dx
/
F̄
(
λ̂∗∗

)
+ λ̂∗∗, where λ̂∗∗ does not depend on the distribution F (·). So the equilibrium

price is larger under market F1(·) if and only if
∫ 1

λ̂∗∗ F̄1(x)dx
/
F̄1

(
λ̂∗∗

)
≥

∫ 1

λ̂∗∗ F̄2(x)dx
/
F̄2

(
λ̂∗∗

)
. Then,

it is straightforward to prove the counterparts for the commission fraction and the penalty fraction.

Comment on conditions (8) and (9). Here, we present two distributions F1(·) and F2(·), which
satisfy (8) but violate (9). Let F̄1(x) equal − 1

2x+1 if 0 ≤ x ≤ 1
2 , and x2−3x+2 if 1

2 < x ≤ 1. Let F̄2(x) =

1−x and λ̂∗∗ = 1
2 . It is easy to check that F1 is stochastically larger than F2: F̄1(x) ≥ F̄2(x) for 0 ≤ x ≤ 1.

However, we have
∫ 1

λ̂∗∗ F̄1(x)dx
/
F̄1

(
λ̂∗∗

)
<

∫ 1

λ̂∗∗(− 3
2x + 3

2 )dx
/
F̄1

(
λ̂∗∗

)
= 1

4 =
∫ 1

λ̂∗∗ F̄2(x)dx
/
F̄2

(
λ̂∗∗

)
,

because F̄1(x) is convex on
[
λ̂∗∗, 1

]
while F̄2(x) is linear on

[
λ̂∗∗, 1

]
.

Proof of Theorem 3. Denote ξ = F̄
(
λ̂∗∗

)
, η =

∫ 1

λ̂∗∗ xf(x)dx, and λ† = (1−PM )PBℓ
(1−PM )PBℓ+µB−µS

, where

ξ ≥ η ≥ λ̂∗∗ξ.
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1. Take the first-order derivative of λ̂∗∗ with respect to PM : ∂λ̂∗∗

∂PM
= − PBℓ(µB−µS−c)

[(1−PM )PBℓ+µB−µS ]2
< 0. So

the optimal threshold λ̂∗∗ decreases with PM . Since α∗ = 1 − µS

Π̂(λ̂∗∗)
, the optimal commission frac-

tion α∗ and equilibrium price Π̂
(
λ̂∗∗

)
have the same result of sensitivity analysis with respect to PM .

Therefore, we omit the sensitivity analysis of Π̂
(
λ̂∗∗

)
and only provide the analysis of α∗ in the following.

2. First, we provide the sensitivity analysis of the platform’s optimal profit R∗
M . The optimal expected

profit of the platform equals R∗
M =

∫ 1

λ̂∗∗ [x(µB − µS) − (1 − x)(1 − PM )PBℓ − c]f(x)dx. Its first-order
derivative is given as:

∂R∗
M

∂PM
= −

[
λ̂∗∗(µB − µS)−

(
1− λ̂∗∗

)
(1− PM )PBℓ− c

]
f
(
λ̂∗∗

) ∂λ̂∗∗

∂PM
+

∫ 1

λ̂∗∗
(1− x)PBℓf(x)dx.

The first term is 0 according to the definition of λ̂∗∗ in Theorem 2. Note that the second term is
non-negative. So the platform’s optimal expected profit R∗

M increases with PM .

Next, we provide the sensitivity analysis of the optimal commission fraction α∗. Denote γ
(
λ̂∗∗

)
=

F̄(λ̂∗∗)∫ 1
λ̂∗∗ xf(x)dx

, then Π̂
(
λ̂∗∗

)
= µB

(1−PM )γ(λ̂∗∗)+PM
. Since

dγ(λ̂∗∗)
dλ̂∗∗ = − f(λ̂∗∗)

∫ 1
λ̂∗∗(x−λ̂∗∗)f(x)dx

[
∫ 1
λ̂∗∗ xf(x)dx]2

< 0 for λ̂∗∗ ∈

(0, 1), γ
(
λ̂∗∗

)
is decreasing in λ̂∗∗. Note that α∗ = 1 − µS

Π̂(λ̂∗∗)
= 1 − µS

µB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM

]
. Its

first-order derivative is given as: ∂α∗

∂PM
= − µS

µB

[
−γ

(
λ̂∗∗

)
+ (1− PM )

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂PM
+ 1

]
, where γ

(
λ̂∗∗

)
=

ξ
η ,

dγ(λ̂∗∗)
dλ̂∗∗ = −f

(
λ̂∗∗

)
η−λ̂∗∗ξ

η2 , and ∂λ̂∗∗

∂PM
= − PBℓ(µB−µS−c)

[(1−PM )PBℓ+µB−µS ]2 . It is easy to check that (1−PM )∂λ̂
∗∗

∂PM
=

−λ†
(
1− λ̂∗∗

)
. So ∂α∗

∂PM
= − µS

µB

[
− ξ

η + λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
η−λ̂∗∗ξ

η2 + 1
]
. Hence, the optimal commis-

sion fraction α∗ increases with PM if and only if λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)(
η − λ̂∗∗ξ

)
≤ (ξ − η)η.

Lastly, we provide the sensitivity analysis of the optimal penalty fraction β∗. Note that β∗ =
(1−PM )µS

PM Π̂(λ̂∗∗)
and Π̂

(
λ̂∗∗

)
= µB

(1−PM )γ(λ̂∗∗)+PM
. Then, β∗ = (1−PM )µS

PMµB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM

]
. Its

first-order derivative is ∂β∗

∂PM
= µS

µB

[
− 1−P 2

M

P 2
M

γ
(
λ̂∗∗

)
+ (1−PM )2

PM

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂PM
− 1

]
, where γ

(
λ̂∗∗

)
= ξ

η ,

dγ(λ̂∗∗)
dλ̂∗∗ = −f

(
λ̂∗∗

)
η−λ̂∗∗ξ

η2 , and ∂λ̂∗∗

∂PM
= − PBℓ(µB−µS−c)

[(1−PM )PBℓ+µB−µS ]2 . It is easy to check that (1− PM )∂λ̂
∗∗

∂PM
=

−λ†
(
1− λ̂∗∗

)
. Then ∂β∗

∂PM
≤ 0 if and only if (1−PM )

PM

η−λ̂∗∗ξ
η2 λ†

(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
≤ 1−P 2

M

P 2
M

ξ
η + 1, which is

equivalent to λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
≤ P 2

Mη2+(1−P 2
M )ξη

(1−PM )PM(η−λ̂∗∗ξ)
.

Comment on condition (10). In Example 1, we show that condition (10) can be satisfied in many
distributions by numerical study. Here, we give an example that violates condition (10).

Example 3. If f(λ) = 1
4ϵI{1/4− ϵ < λ < 1/4+ ϵ}+1/2, µB = 10, µS = 6, PB = 0.2 and l = 10, c = 1

2 ,

then we have λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)(
η − λ̂∗∗ξ

)
> (ξ − η)η for PM = 2

3 .

For PM = 2
3 , we obtain λ† = 1

7 , λ̂
∗∗ = 1

4 , ξ = F̄
(
λ̂∗∗

)
=

∫ 1/4+ϵ

1/4
( 1
4ϵ +

1
2 )dx +

∫ 1

1/4+ϵ
1
2dx = 5

8 and η =∫ 1

λ̂∗∗ xf(x)dx =
∫ 1/4+ϵ

1/4
x
(

1
4ϵ +

1
2

)
dx +

∫ 1

1/4+ϵ
1
2xdx = 19

64 + ϵ
8 . Then λ†

(
1− λ̂∗∗

)
f
(
λ̂∗∗

)(
η − λ̂∗∗ξ

)
=

3
28

(
1
4ϵ +

1
2

) (
9
64 + ϵ

8

)
= O

(
1
ϵ

)
, and (ξ − η)η =

(
21
64 − ϵ

8

) (
ϵ
8 + 19

64

)
= O(1). Thus, when ϵ is sufficiently

small, we obtain λ†
(
1− λ̂∗∗

)
f
(
λ̂∗∗

)(
η − λ̂∗∗ξ

)
> (ξ − η)η.

Comment on condition (11). We prove that
f(λ̂∗∗)
F̄(λ̂∗∗)

≤ 8 is a sufficient condition to guarantee ∂β∗

∂PM
≤

0. This sufficient condition is easier to identify than (11). Since λ†
(
1− λ̂∗∗

)
≤ λ̂∗∗

(
1− λ̂∗∗

)
≤ 1

4 , we

have ∂β∗

∂PM
= µS

µB

[
− 1−P 2

M

P 2
M

γ
(
λ̂∗∗

)
+ (1−PM )2

PM

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂PM
− 1

]
= µS

µB

[
− 1−P 2

M

P 2
M

ξ
η + (1−PM )

PM

η−λ̂∗∗ξ
η2 λ†

(
1− λ̂∗∗

)
f
(
λ̂∗∗

)
− 1

]
≤ µS

µB

[
− 1−P 2

M

P 2
M

ξ
η + 1

4
1−PM

PM

η−λ̂∗∗ξ
η2 f

(
λ̂∗∗

)
− 1

]
= µS

µBP 2
Mη2

[
−(1− P 2

M )ξη + 1
4 (1− PM )PMη

f
(
λ̂∗∗

)
− 1

4 (1− PM )PM λ̂∗∗ξf
(
λ̂∗∗

)
− P 2

Mη2
]
. If

f(λ̂∗∗)
F̄(λ̂∗∗)

=
f(λ̂∗∗)

ξ ≤ 8, then −(1 − P 2
M )ξη + 1

4 (1 −

PM )PMηf
(
λ̂∗∗

)
= − 1

4 (1 − PM )PMξη
[
4 1+PM

PM
− f(λ̂∗∗)

ξ

]
≤ − 1

4 (1 − PM )PMξη

[
8− f(λ̂∗∗)

ξ

]
≤ 0. Thus,

we have ∂β∗

∂PM
≤ 0 if

f(λ̂∗∗)
F̄(λ̂∗∗)

≤ 8.
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Proof of Theorem 4. Denote Ω(1) =

{
(α, β)

∣∣∣∣α ≤ 1− µS

µB
, β > 1−PM

PM
(1− α)

}
, Ω(0) =

{
(α, β)

∣∣∣∣α ≤ 1−

µS(1−PM+PMw)
µBw , β < 1−PM

PM
(1− α)

}
, Ω (1+) =

{
(α, β)

∣∣∣∣α > 1− µS

µB
, β > 1−PM

PM
(1− α)

}
, Ω̃ =

{
(α, β)

∣∣∣∣α
> 1− µS(1−PM+PMw)

µBw , β < 1−PM

PM
(1− α)

}
, and V (1) =

{
(α, β)

∣∣∣∣α = 1− µS

µB
, β > 1−PM

PM
(1− α)

}
.

1. Given π ∈ (0, µB ], the buyer generates a posterior belief m(π) about the seller’s type, that is P (λ =
1|π) = m(π). The buyer’s expected utility is RB(I;π) = [m(π)(µB − π)− (1−m(π))(1− PM )π]I. The
buyer purchases the product with price π (I∗(π) = 1) if and only if RB(1;π) ≥ RB(0;π) = 0, that is

m(π) ≥ (1− PM )π

µB − PMπ
⇐⇒ π ≤ m(π)µB

1− PM +m(π)PM
. (23)

If π ∈ (0, µB ], the type-1 seller’s expected revenue is RS(π; 1, I) = (1 − α)πI and the type-0 seller’s
expected revenue is RS(π; 0, I) = [(1 − α)(1 − PM ) − βPM ]πI; if π = ∞, the type-1 seller’s expected
revenue is µS and the type-0 seller’s expected revenue is 0. Next, we analyze the equilibrium of the
signaling game for the following sets of contract parameters: Ω(1), Ω(0), and Ω(1+) ∪ Ω̃.

(a) For (α, β) ∈ Ω(1), we analyze the seller’s equilibrium decision by considering the following 4 cases.

Case 1: Both seller types choose to sell.

This case is impossible because the type-0 seller’s expected revenue RS(π; 0, I) is negative for any
acceptable price π ∈ (0, µB ] if β > (1− α) 1−PM

PM
.

Case 2: Both seller types refuse to sell.

In this case, π∗(1) = π∗(0) = ∞. The type-1 seller earns µS and the type-0 seller earns 0.

Case 3: Only type-1 seller chooses to sell.

In this case, π∗(1) = π1 and π∗(0) = ∞, where 0 < π1 ≤ µB .

Case 4: Only type-0 seller chooses to sell.

This case is impossible because the type-0 seller’s expected revenue RS(π; 0, I) is negative for any
acceptable price π ∈ (0, µB ] if β > (1− α) 1−PM

PM
.

Among the above 4 cases, only Cases 2 and 3 are possible in equilibrium. By Pareto dominance,
we choose the equilibrium in which π∗(1) = µB and π∗(0) = ∞.

(b) For (α, β) ∈ Ω(0), we similarly consider the above 4 cases.

Case 1: Both seller types choose to sell.

We first consider the two seller types adopt different prices. Without loss of generality, we assume
that π∗(0) = π0 and π∗(1) = π1, where 0 < π0 < π1 ≤ µB . Since we only consider participating
equilibria, then I∗(π0) = I∗(π1) = 1. Since β < 1−PM

PM
(1 − α), we obtain RS(π0; 0, I

∗(π0)) =
[(1− α)(1− PM )− βPM ]π0 < [(1− α)(1− PM )− βPM ]π1 = RS(π1; 0, I

∗(π1)). This implies that
the price π1 is a profitable deviation for the type-0 seller, and thus it violates Condition 2.

Therefore, we only need to consider that the two seller types adopt the same price. That is,
π∗(0) = π∗(1) = π̂, where 0 < π̂ ≤ µB . According to Condition 3, the on-equilibrium belief should
satisfy the Bayesian rule: m∗(π̂) = w. By (23), we obtain π̂ ≤ wµB

1−PM+wPM
.

Case 2: Both seller types refuse to sell.

In this case, π∗(1) = π∗(0) = ∞. The type-1 seller earns µS and the type-0 seller earns 0.

Case 3: Only type-1 seller chooses to sell.

In this case, π∗(1) = π1 and π∗(0) = ∞, where 0 < π1 ≤ µB and I∗(π1) = 1. Since β <
1−PM

PM
(1−α), we obtain RS(∞; 0, I∗) = 0 < [(1−α)(1−PM )− βPM ]π1 = RS(π1; 0, I

∗(π1)). This
implies that the price π1 is a profitable deviation for the type-0 seller and thus it violates Condition
2. Therefore, Case 3 cannot be an equilibrium.

Case 4: Only type-0 seller chooses to sell.

In this case, π∗(1) = ∞ and π∗(0) = π0, where 0 < π0 ≤ µB and I∗(π0) = 1. According to
Condition 3, the on-equilibrium belief satisfies the Bayesian rule: m(π0) = 0. By (23), we obtain
π0 ≤ 0, which contradicts with 0 < π0 ≤ µB . Therefore, Case 4 cannot be an equilibrium.

Among the above 4 cases, only Cases 1 and 2 are possible in equilibrium. By Pareto dominance,
we select the equilibrium in which π∗(0) = π∗(1) = wµB

1−PM+wPM
.

(c) For (α, β) ∈ Ω(1+) ∪ Ω̃, we can similarly consider the above 4 cases. It is easy to prove that only

Case 2 can be an equilibrium. Therefore, the seller chooses not to sell for (α, β) ∈ Ω(1+) ∪ Ω̃.

2. To derive the platform’s optimal contract, we consider the sets Ω(1), Ω(0), and Ω(1+) ∪ Ω̃ as follows.
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(a) If (α, β) ∈ Ω(1), only the type-1 seller chooses to sell through the platform. It is optimal for the
platform to choose the largest commission fraction that can be accepted by the type-1 seller. Thus,
in Ω(1) the set of optimal contracts is V (1) and the platform’s expected profit is w(µB − µS − c).

(b) If (α, β) ∈ Ω(0), the seller chooses to sell with price wµB

1−PM+PMw regardless of his type. We next
prove that for any (α, β) ∈ Ω(0) the platform’s expected profit is smaller than w(µB − µS − c).
The total expected profit of the platform and the seller is [w+(1−w)(1−PM )] wµB

1−PM+PMw − (1−
w)(1−PM )PBℓ− c = wµB − (1−w)(1−PM )PBℓ− c. The seller’s expected revenue is larger than
or equal to his expected reservation price. Thus, the platform’s expected profit is smaller than or
equal to w(µB − µS)− (1− w)(1− PM )PBℓ− c, which is smaller than w(µB − µS − c).

(c) If (α, β) ∈ Ω(1+)∪ Ω̃, then the seller does not sell. In this case, the platform’s expected profit is 0.

Overall, the set of the platform’s optimal contracts is V (1) and the platform’s optimal expected profit is
w(µB − µS − c).

Proof of Proposition 4. The proof of Proposition 4 is similar to that of Proposition 1, and hence
omitted.

Proof of Proposition 5.

1. The sensitivity analysis is obtained directly from the first-order derivative: ∂λ̂∗∗

∂PB
= (1−PM )(µB−µS−c)ℓ

[(1−PM )PBℓ+µB−µS ]2
>

0, ∂λ̂∗∗

∂ℓ = (1−PM )(µB−µS−c)PB

[(1−PM )PBℓ+µB−µS ]2
> 0, ∂λ̂∗∗

∂c = 1
(1−PM )PBℓ+µB−µS

> 0, ∂λ̂∗∗

∂µS
= (1−PM )PBℓ+c

[(1−PM )PBℓ+µB−µS ]2
> 0, and

∂λ̂∗∗

∂µB
= − (1−PM )PBℓ+c

[(1−PM )PBℓ+µB−µS ]2
< 0.

Denote ξ = F̄
(
λ̂∗∗

)
=

∫ 1

λ̂∗∗ f(x)dx, η =
∫ 1

λ̂∗∗ xf(x)dx, and γ
(
λ̂∗∗

)
=

F̄(λ̂∗∗)∫ 1
λ̂∗∗ xf(x)dx

= ξ
η . Then,

dγ(λ̂∗∗)
dλ̂∗∗ = − f(λ̂∗∗)

∫ 1
λ̂∗∗(x−λ̂∗∗)f(x)dx

[
∫ 1
λ̂∗∗ xf(x)dx]

2 = −f
(
λ̂∗∗

)
η−λ̂∗∗ξ

η2 < 0. The equilibrium price is Π̂
(
λ̂∗∗

)
=

µB

(1−PM )γ(λ̂∗∗)+PM
. Take the first-order derivative:

∂Π̂(λ̂∗∗)
∂PB

= − (1−PM )µB

[(1−PM )γ(λ̂∗∗)+PM ]
2

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂PB
> 0,

∂Π̂(λ̂∗∗)
∂ℓ = − (1−PM )µB

[(1−PM )γ(λ̂∗∗)+PM ]
2

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂ℓ > 0,
∂Π̂(λ̂∗∗)

∂c = − (1−PM )µB

[(1−PM )γ(λ̂∗∗)+PM ]
2

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂c > 0, and

∂Π̂(λ̂∗∗)
∂µS

= − (1−PM )µB

[(1−PM )γ(λ̂∗∗)+PM ]
2

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂µS
> 0. The derivative to µB is

∂Π̂(λ̂∗∗)
∂µB

= 1

[(1−PM )γ(λ̂∗∗)+PM ]
2[

(1− PM )γ
(
λ̂∗∗

)
+ PM − µB(1− PM )

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂µB

]
= 1

[(1−PM )γ(λ̂∗∗)+PM ]
2

[
(1− PM ) ξη + PM − µB(1− PM )

f
(
λ̂∗∗

)
η−λ̂∗∗ξ

η2

(1−PM )PBℓ+c

[(1−PM )PBℓ+µB−µS ]2

]
, which can be either positive or negative.

2. Note that α∗ = 1 − µS

µB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM

]
and β∗ = (1−PM )µS

PMµB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM

]
,

so the optimal commission fraction and the optimal penalty fraction always have opposite results of
the sensitivity analysis with respect to PB , ℓ, c, µS and µB . Therefore, we only provide the proof
of the sensitivity analysis of the optimal commission α∗. Take the first-order derivative: ∂α∗

∂PB
=

−(1−PM ) µS

µB

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂PB
> 0, ∂α∗

∂ℓ = −(1−PM ) µS

µB

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂ℓ > 0, ∂α∗

∂c = −(1−PM ) µS

µB

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂c > 0,

∂α∗

∂µS
= − 1

µB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM + µS(1− PM )

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂µS

]
= − 1

µB

[
(1− PM )γ

(
λ̂∗∗

)
+ PM − µS

(1− PM )
dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂µB

]
, and ∂α∗

∂µB
= µS

(µB)2

[
(1− PM )γ

(
λ̂∗∗

)
+ PM − µB(1− PM )

dγ(λ̂∗∗)
dλ̂∗∗

∂λ̂∗∗

∂µB

]
, where

the last two derivatives can be either positive or negative. Therefore, the optimal commission fraction
and the optimal penalty fraction may increase or decrease with µS and µB .

3. Take the first-order derivative with respect to PB :
∂R∗

M

∂PB
= −

[
λ̂∗∗(µB − µS)−

(
1− λ̂∗∗

)
(1− PM )PBℓ− c

]
f
(
λ̂∗∗

)
∂λ̂∗∗

∂PB
−

∫ 1

λ̂∗∗(1 − x)(1 − PM )ℓf(x)dx, where the term in the square bracket is zero according to

the definition of λ̂∗∗ in Theorem 2. Therefore,
∂R∗

M

∂PB
≤ 0. The proof of other parameters is similar.

Proof of Theorem 5. For λ̂∗ ∈ (0, 1), Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α < 1− µS

Π̂(λ̂∗)
, β =

(1−PM+PM λ̂∗)(1−α)Π̂(λ̂∗)−λ̂∗µS

(1−λ̂∗)PM Π̂(λ̂∗)

}
.

For λ̂∗ = 1, Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

µB
, β > 1−PM

PM
(1− α)

}
.

For λ̂∗ ∈ [0, 1], let V
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

Π̂(λ̂∗)
, β = 1−PM

PM
(1− α)

}
.

The proof of Theorem 5 is similar to that of Theorems 1 and 2, and hence omitted.
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Proof of Theorem 6.
1. Similar to Theorem 1, we only focus on β > 1−PM

PM
(1− α). To derive the equilibrium of the signaling

game, we follow the three steps in Figure 3.
Step 1: Reduce the space of possible equilibria.

The seller’s expected revenue is RS(π;λ, I
∗(π)) = [(1− PM + PMλ)(1− α)− (1− λ)PMβ]πI∗(π) =

[PM (1− α+ β)λ+ (1− PM )(1− α)− PMβ]πI∗(π). Note that the seller’s revenue function is the prod-
uct of two separate functions: one only in terms of λ and the other only in terms of π. Consequently, the

seller will use the same equilibrium price if he chooses to sell. Specifically, for λ ≤ λ̂ ≜ PMβ−(1−PM )(1−α)
PM (1−α+β) ,

we obtain RS(π;λ, I
∗(π)) ≤ 0. Thus, the seller with λ ∈

[
0, λ̂

]
chooses not to sell by setting π∗(λ) = ∞.

For λ > λ̂, define π̂ ∈ argmax
π∈(0,µB ]

πI∗(π). Then, RS(π;λ, I
∗(π)) ≥ λµS if and only if λ ≥ λ̂, where

λ̂ = [PMβ−(1−PM )(1−α)]π̂I∗(π̂)
PM (1−α+β)π̂I∗(π̂)−µS

, which is equivalent to π̂I∗ (π̂) = A
(
λ̂
)
≜ λ̂µS

PM (1−α+β)λ̂+(1−PM )(1−α)−PMβ
.

Similar to the proof of Lemma 2, the seller’s equilibrium decision has the following structure.

(a) π∗(λ) = ∞ for λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for λ ∈

[
λ̂, 1

]
, where λ̂ < λ̂ ≤ 1 and π̂I∗ (π̂) = A

(
λ̂
)
.

(b) π∗(λ) = ∞ for λ ∈ [0, 1].

Now we focus on the semi pooling equilibrium (that is, part (a) above) in which π∗(λ) = ∞ for

λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for λ ∈

[
λ̂, 1

]
, and identify the condition on the equilibrium price π̂ (similar

to Lemma 3). The on-equilibrium belief m (·|π̂) should satisfy the Bayesian rule: m (x|π̂) equals f(x)

F̄(λ̂)
if

x ≥ λ̂, and 0 otherwise. Thus, we obtain E [λ|π̂] =
∫ 1
λ̂
xf(x)dx

F̄(λ̂)
and

I∗ (π̂) = Ḡ

([
1− PM

E[λ|π̂] + PM

]
π̂

)
= Ḡ

(
h
(
λ̂
)
π̂
)
, (24)

where h
(
λ̂
)

=
(1−PM )F̄(λ̂)+PM

∫ 1
λ̂
xf(x)dx∫ 1

λ̂
xf(x)dx

≥ 1. To identify the condition on the equilibrium price π̂,

we next derive the upper bound of π̂I∗ (π̂). For simplicity, we make a linear variable substitution: let

π̊ = h
(
λ̂
)
π̂. Then, π̂I∗ (π̂) = 1

h(λ̂)
χ (̊π), where χ (̊π) ≜ π̊Ḡ (̊π) and π̊ ∈

(
0, h

(
λ̂
)
µB

]
.

(a) For π̊ < µ
B
, χ (̊π) = π̊ is increasing in π̊.

(b) For π̊ > µB , χ (̊π) = 0.

(c) For µ
B
≤ π̊ ≤ µB , the first-order derivative of χ (̊π) is dχ(̊π)

dπ̊ = Ḡ (̊π)
[
1− π̊ g(̊π)

Ḡ(̊π)

]
, which changes

its sign at most once on the interval
[
µ
B
, µB

]
because π̊ g(̊π)

Ḡ(̊π)
increases with π̊. If 1− π̊ g(̊π)

Ḡ(̊π)
< 0 for

all π̊ ∈
[
µ
B
, µB

]
, then χ (̊π) decreases with π̊ in

[
µ
B
, µB

]
and χ (̊π) attains its maximum at µ

B
.

Otherwise, χ (̊π) is a unimodal function of π̊ in
[
µ
B
, µB

]
and the optimal π̊ satisfies the first-order

condition: π̊ g(̊π)
Ḡ(̊π)

= 1.

Combining the above analysis, χ (̊π) attains its maximum at π̊ = µ0
B ≜ inf

{
y ∈ [µ

B
, µB ]

∣∣yg(y)
Ḡ(y)

≥ 1
}
.

Changing back into the original variable π̂, then π̂I∗ (π̂) attains its maximum at π̂ = Π̂
(
λ̂
)
≜ µ0

B

/
h
(
λ̂
)
.

Note that I∗
(
Π̂
(
λ̂
))

= I∗
(
µ0
B/h

(
λ̂
))

= Ḡ
(
µ0
B

)
according to (24). Thus, in the semi pooling equilib-

rium with λ̂, the equilibrium price π̂ satisfies π̂I∗ (π̂) ≤ Π̂
(
λ̂
)
Ḡ
(
µ0
B

)
, where I∗ (π̂) = Ḡ

(
h
(
λ̂
)
π̂
)
.

In summary, for a semi pooling equilibrium in which π∗(λ) = ∞ for λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for

λ ∈
[
λ̂, 1

]
, we obtain the following necessary condition: π̂ and λ̂ satisfy λ̂ < λ̂ ≤ 1, π̂I∗ (π̂) = A

(
λ̂
)
,

and π̂I∗ (π̂) ≤ Π̂
(
λ̂
)
Ḡ
(
µ0
B

)
, where I∗ (π̂) = Ḡ

(
h
(
λ̂
)
π̂
)
.

Step 2: Find all the equilibria within the reduced space.
We can prove that any pair of π̂ and λ̂ satisfying the above condition can be supported as a semi

pooling equilibrium by specifying off-equilibrium beliefs appropriately (similar to the proof of Lemma
C.1). Specifically, to guarantee that π̂ is the seller’s equilibrium price, we need πI∗(π) ≤ π̂I∗ (π̂) for

any π ∈ (0, µB ], where I∗(π) = Ḡ
([

1−PM

E[λ|π] + PM

]
π
)

and I∗ (π̂) = Ḡ
(
h
(
λ̂
)
π̂
)
. Thus, for the semi

pooling equilibrium in which π∗(λ) = ∞ for λ ∈
[
0, λ̂

)
and π∗(λ) = π̂ for λ ∈

[
λ̂, 1

]
, we specify the

following off-equilibrium beliefs. For π ̸= π̂ and πḠ(π) ≤ π̂I∗ (π̂), the off-equilibrium belief m∗(x|π) can
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be arbitrary. However, for π ̸= π̂ and πḠ(π) > π̂I∗ (π̂), the off-equilibrium belief m∗(x|π) should satisfy

the following condition: πI∗(π) ≤ π̂I∗ (π̂), which is equivalent to E(λ|π) ≤ (1−PM )π

Ḡ−1(π̂Ḡ(h(λ̂)π̂)/π)−PMπ
.

Step 3: Refine the equilibria by Pareto dominance.
Similar to the proof of Theorem 1, we can prove that for β > 1−PM

PM
(1 − α) and α ≤ 1 − µS

µ0
BḠ(µ0

B)
,

there exists a unique equilibrium that Pareto dominates other equilibria from the seller’s point of view.

In this equilibrium, π∗(λ) = ∞ for λ < λ̂∗ and π∗(λ) = π̂∗ = Π̂
(
λ̂∗

)
for λ ≥ λ̂∗, where λ̂∗ is uniquely

determined by A
(
λ̂∗

)
= Π̂

(
λ̂∗

)
Ḡ(µ0

B) ⇐⇒ λ̂∗µS

PM (1−α+β)λ̂∗+(1−PM )(1−α)−PMβ
= Π̂

(
λ̂∗

)
Ḡ
(
µ0
B

)
. The

off-equilibrium beliefs for this equilibrium are specified in Step 2. Moreover, similar to the proof of
Theorem 1, we can derive the set of (α, β) that induces the equilibrium with λ̂∗. For λ̂∗ ∈ (0, 1),

Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α < 1− µS

Π̂(λ̂∗)Ḡ(µ0
B)

, β =
(1−PM+PM λ̂∗)(1−α)Π̂(λ̂∗)Ḡ(µ0

B)−λ̂∗µS

(1−λ̂∗)PM Π̂(λ̂∗)Ḡ(µ0
B)

}
, which is a ray on α-β

plane because β is linear in α. For λ̂∗ = 1, Ω
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

µ0
BḠ(µ0

B)
, β > 1−PM

PM
(1− α)

}
.

2. Denote V
(
λ̂∗

)
=

{
(α, β)

∣∣α = 1− µS

Π̂(λ̂∗)Ḡ(µ0
B)

, β = (1−PM )µS

PM Π̂(λ̂∗)Ḡ(µ0
B)

}
, which is the end point of the ray

Ω
(
λ̂∗

)
. Similar to the base model, we can prove that for a given threshold λ̂∗, the contract (α, β) =

V
(
λ̂∗

)
is optimal for the platform. Under the contract V

(
λ̂∗

)
, the seller’s expected revenue is equal

to his expected reservation price λµS , so the platform’s expected profit can be written as RM

(
λ̂∗

)
=

Ḡ
(
µ0
B

) ∫ 1

λ̂∗

[
(1− PM + PMx)Π̂

(
λ̂∗

)
− xµS − (1− x)(1− PM )PBℓ− c

]
f(x)dx = Ḡ

(
µ0
B

) ∫ 1

λ̂∗

[
x(µ0

B − µS)

−(1− x)(1− PM )PBℓ− c] f(x)dx, which is a unimodal function of λ̂∗. By the first-order condition, the

optimal threshold is λ̂∗∗ = (1−PM )PBℓ+c
(1−PM )PBℓ+µ0

B−µS
.
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