Cellular Bucket Brigades
A Self-Balancing Scheme for U-Shaped Production Lines

Yun Fong LIM
yflim@smu.edu.sg

Lee Kong Chian School of Business
Singapore Management University

June 21, 2018
A **cellular bucket brigade** is a way to coordinate workers in a production line where work content is distributed on both sides of an aisle.

Consider a production line as follows. Each worker i works with a speed v_i in the forward direction, and works with a speed u_i in the backward direction.
Hand-off

Instead of completing a job individually, workers transfer their work through ‘hand-offs’. For a two-worker system, a hand-off occurs when worker 1 moving forward meets worker 2, who is moving backward, along the aisle (point x^t along the aisle). The workers exchange their work in the hand-off by crossing the aisle with a speed w.
After the hand-off, worker 1 (blue) works backward with a speed u_1 and worker 2 (red) works forward with a speed v_2.
When the workers reach the ends, they make a U-turn by crossing the aisle again.
After the U-turn, worker 1 (blue) works forward with a speed v_1 and worker 2 (red) works backward with a speed u_2. The workers meet again at point x^{t+1} along the aisle.
Self-balance of cellular bucket brigades

If the hand-off location $x^t \to x^*$ as $t \to \infty$, then each worker will eventually work in a loop or a ‘cell’. We say the system self-balances.
Self-balance of cellular bucket brigades

Here is an example of a three-worker system in the balance.

\[\begin{align*}
0 & \quad x_1^* & \quad x_2^* & \quad \frac{1}{2} \\
Start & \quad & \quad & \\
End & \quad & \quad & \\
\end{align*} \]

Theorem:
A cellular bucket brigade self-balances if

\[\frac{1}{v_1} - \frac{1}{u_1} > \frac{1}{v_2} - \frac{1}{u_2} > \cdots > \frac{1}{v_n} - \frac{1}{u_n}. \]

https://ink.library.smu.edu.sg/lkcsb_research/3202/
Consider a **special case** where each worker i works with a speed v_i in the forward direction, and works with a speed λv_i in the backward direction.

- If $\lambda > 1$ then workers should be sequenced such that $v_1 < v_2 < \ldots < v_n$. If forward line has more work, then sequence the workers from slowest to fastest in the forward direction.

- If $\lambda < 1$ then workers should be sequenced such that $v_1 > v_2 > \ldots > v_n$. If backward line has more work, then sequence the workers from slowest to fastest in the backward direction.
Given the same team of workers, a cellular bucket brigade is more productive than a serial bucket brigade if the team size n and the aisle width a are small.

https://ink.library.smu.edu.sg/lkcsb_research/3202/
The same idea can be applied to a situation where each worker i spends times h^+_i and h^-_i in a hand-off with his predecessor (worker $i-1$) and successor (worker $i+1$) respectively.

https://ink.library.smu.edu.sg/lkcsb_research/4544/
The idea can also be applied to **warehouse order-picking** where each worker can pick products from both sides of an aisle.

https://ink.library.smu.edu.sg/lkcsb_research/3171/
Applying the ideas on U-lines

U-line with discrete work stations

Dynamic U-line balancing

Assumptions:

1. Only one worker can work on a station at any time
2. Worker i works on stage j with velocity v_{ij}
3. Instantaneous walk

https://ink.library.smu.edu.sg/lkcsb_research/3512/
Cellular bucket brigade rules on a U-line

Worker 1:
- Assemble a new item on Station 1 until you meet your colleague.
- Assemble your item on Station 3 until you finish.

Worker 2:
- Assemble your item along the line until you meet your colleague.
References

 ▶ https://ink.library.smu.edu.sg/lkcsb_research/3202/

 ▶ https://ink.library.smu.edu.sg/lkcsb_research/3171/

 ▶ https://ink.library.smu.edu.sg/lkcsb_research/3512/

 ▶ https://ink.library.smu.edu.sg/lkcsb_research/4544/