Scalable Randomized Patrolling for Securing Rapid Transit Networks

Pradeep Varakantham, Hoong Chuin Lau, Zhi Yuan
School of Information Systems, Singapore Management University, Singapore
{pradeepv,hclau,zhiyuan} @smu.edu.sg

Abstract

Mass Rapid Transit using rail is a popular mode of transport
employed by millions of people in many urban cities across
the world. Typically, these networks are massive, used by
many and thus, can be a soft target for criminals. In this
paper, we consider the problem of scheduling randomised
patrols for improving security of such rail networks. Sim-
ilar to existing work in randomised patrols for protecting
critical infrastructure, we also employ Stackelberg Games
to represent the problem. In solving the Stackelberg games
for massive rail networks, we make two key contributions.
Firstly, we provide an approach called RaPtoR for comput-
ing randomized strategies in patrol teams, which guarantees
(1) Strong Stackelberg equilibrium (SSE); and (ii) Optimal-
ity in terms of distance traveled by the patrol teams for spe-
cific constraints on schedules. Secondly, we demonstrate
RaPtoR on a real world data set corresponding to the rail
network in Singapore. Furthermore, we also show that the
algorithm scales easily to large rail networks while provid-
ing SSE randomized strategies.

Introduction

Massive rail networks have reduced the transportation time
significantly in many of the major cities across the world in-
cluding Beijing, Singapore, Paris, New York, Hong Kong,
London. However, due to the number of people they serve
every hour of every day, these networks can be soft tar-
gets for various types of criminals (terrorists, pick pocketers,
fare offenders, etc.) without proper security. In this paper,
we consider this problem of scheduling randomised patrols
for massive rail networks, where it is very difficult to have
enough patrols to secure all the rail stations all the time.
Recent research (Tambe 2012) has emphasized and
demonstrated the use of game theory in protecting large
scale critical infrastructure such as airports, train stations,
ports, forests etc. More specifically, in environments where
there is a scarcity of resources, Stackelberg games have been
used to represent the problem of resource allocation to pro-
tect potential targets in adversarial environments. Equilib-
rium strategies for the Stackelberg games are randomized
and hence provide an ideal foil to deferring intelligent adver-

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

saries planning to attack. However, existing approaches can-
not yet handle resource allocation in massive rail networks.

To that end, we make the following contributions in this
paper: (a) Firstly, we provide a scalable two phase approach
called RaPtoR (Randomized Patrolling for Rail networks)
that computes coverage probabilities for various targets in
the first phase and then computes an execution plan at run-
time by connecting samples from the randomized coverage
probabilities; (b) Secondly, we demonstrate the scalability of
our approach by generating randomised schedules for patrol
teams patrolling the Singapore rail network that has 108 sta-
tions, 30 patrol teams and up to 8 hour shifts for patrol teams
each day. The Stackelberg game models are constructed
from the real world data set containing the utilisation of rail
stations by travelers throughout the day.

Related Work

(Chu and Chan 1998) and (Elizondo et al. 2010) have stud-
ied the problem of Crew rostering in public transportation
systems. (Stern and Teomi 1986) and (Sharma 2007) have
studied and proposed algorithms for scheduling security
guards/police officers/patrol cars in various distinctive set-
tings. However, these crew rostering and scheduling algo-
rithms have not modelled adversaries while computing the
schedules.

The line of research that has the most similarities to our
work is the application of game theory to patrol schedul-
ing. (Tsai et al. 2009) and (Ordonez et al. 2012) have mod-
eled the strategic security allocation problem as a Strack-
elberg game and developed the Intelligent Randomization
In Scheduling (IRIS) system. This is a tool for scheduling
Federal Air Marshals (FAMs) that provide law enforcement
aboard U.S. commercial flights. However, unlike the FAMS
problem in which a patrol consists of very limited number of
flights (usually 2 or 3), we allow for more complex patrols
that have to account for distance between targets and also
longer planning horizons for each of the patrol teams. Our
problem is closely related to the one addressed by (Yin et al.
2012) and we will provide a detailed comparison in a later
section.

Figure 1: Singapore MRT Map

Application: Security of Mass Rapid Transit
(MRT) Stations

We address the problem of generating randomized sched-
ules for police patrols to secure Mass Rapid Transit (MRT)
systems for trains. We are specifically interested in the
Singapore MRT system shown in Figure 1. There are a
total of 108 stations or targets for adversaries (represented
by 7 henceforth) spread along seven different lines and are
patrolled by a set of patrol teams PP. The number of people
visiting the stations at various times during the day changes
and consequently, the risk of not patrolling a train station
also changes. Each patrolling team has a shift of A hours
visiting one station per hour. An example patrol schedule of
shift length 5 is provided below:

9:00AM 10:00AM 11:00AM 12:00PM 1:00PM

Airport Expo Lavender Bugis City Hall

While the problem setting described here is similar to the
one in (Yin et al. 2012), there are major differences:
Scale: For optimal coverage, we do not assume independent
lines and have to account for transfers between lines. This
increases the scale of the problem considerably. In addi-
tion, the number of train stations are higher (108 compared
to a maximum of 22), the number of patrol teams are higher
and the aspect of computing H (> 8) patrols per shift in-
creases the complexity. In our problem, there is also a need
for schedules to reduce the distance traveled by patrol teams.
Breaks and other constraints: Another key distinction is
the presence of breaks for the patrol teams. In addition, there
are other constraints such as no one team can visit the same
station twice during a shift and no two teams can take the
break in the same station at the same time. These make the
randomisation aspects difficult.
Objective: In our problem, the objective for the patrol teams
is to secure the stations against criminal attacks. However,
the main objective for the defenders in Yin ef al.’s work is to
catch fare offenders. Due to this, the underlying optimiza-

tion is vastly different.

While our experimental results are based on the Singa-
pore rail transport network, our research is applicable and
can scale to rail transport networks in many cities, including
but not limited to London, Beijing and Paris.

Deterministic Model

Previously, (Lau and Gunawan 2012) have addressed the
problem of patrolling MRT stations in Singapore, while con-
sidering a known adversary model, which launches an attack
according to a probability distribution. This probability dis-
tribution is typically constructed based on geographical den-
sity, criminology analysis, or intelligence sources. Here we
extended the model in (Lau and Gunawan 2012) to improve
its applicability and scalability. The key points of this ap-
proach are described as follows:

(a) Akin to previous work, we employ an integer linear pro-
gram (ILP) to solve the overall optimisation problem. By
employing novel valid inequalities, we calculate tighter lin-
ear program (LP) relaxation bounds, thereby improving the
computation performance.

(b) The objective is twofold: maximize the coverage of most
populous stations at the most populous hours, and minimize
the total distance traveled by patrol teams.

(c) Starting and break times of patrol teams are determined
automatically and optimally by solving the ILP model.

This approach was able to compute patrolling schedules
for each of the individual lines (maximum of 31 stations)
in less than 30 seconds. When transfers between lines were
allowed, we solved a problem with 3 lines (67 stations) in
slightly above 20 minutes. However, we were unable to
solve problems of larger scale due to memory problems.

There are two drawbacks with this approach. Firstly, the
optimal schedule generated is deterministic. Secondly, the
scalability of the model is limited: only instances of up to
67 stations or with 15 patrol teams can be solved to date.
These drawbacks motivated us to employ the Stackelberg
representation and our new approach, RaPtoR, which is the
main contribution of this paper.

Stackelberg Representation

Games are a popular model to represent strategic interac-
tions among multiple players. The goal for each player is to
maximize his/her own utility function. Hence, the solution
concept for a game is an equilibrium solution, i.e. a joint
strategy, where no agent has an incentive to deviate.

In the recent past, game theory and more specifically
Stackelberg Games have been used to represent the com-
putation of patrol schedules for security of critical infras-
tructure (Tambe 2012) including airports, planes (federal air
marshals), ports, forests. In these problem domains, the
defenders (security agencies) set their patrol strategy first
and hence are the leaders, whereas the attackers (terrorists,
drug pedlars, and other criminals) are the followers who
observe the patrol strategy over time and attack. It has
been shown that the randomised strategies corresponding
to Strong Stackelberg Equilibrium provide better coverage

than existing methods of computing deterministic and ran-
domised strategies (Tsai et al. 2009; Jain et al. 2010)

Akin to previous work, we also employ a Stackelberg
representation for the train security problem mentioned in
the previous section. In fact, we employ the compact se-
curity game model introduced by (Kiekintveld et al. 2009).
T = {ti1,ta,---} is the set of targets (MRT stations) that
may be attacked and the defender has a set of patrol teams,
P = {p1,pa,- -} to cover the targets. There is no distinc-
tion in the individual patrol teams and can be assigned to any
specific target. Key additions to this compact representation
to capture the MRT problem are the time horizon, H and a
distance value between targets, dy, ,.

The following four utilities are defined for each of the
targets at each decision epoch e (< H) : (a) Utility to the
defender for covering a target: Uy (t); (b) Utility to the de-
fender for an uncovered attack on a target: Uy’ (¢); (c) Util-
ity to the attacker for attacking a covered target: Uc)e(t);
(d) Utility to the attacker for attacking an uncovered target:
Uy e (t). In addition to covering targets, patrol teams have to
spend as little time as possible in traveling to targets.

Covered | Uncovered
Defender 5 -10
Attacker -5 10

Assuming rational behaviour and Stackelberg representa-
tion of the interactions, the attacker and defender would ex-
ecute strategies that are in Strong Stackelberg Equilibrium
(SSE). In an SSE, the defender leads at each epoch e using
a coverage vector C° = (c§,--- ,¢f,-), where c¢§ denotes
the probability of coverage for target ¢ at epoch e, and the
goal is to compute the optimal coverage vectors over all de-
cision epochs. C=(C*,C?,--- ,C™). With respect to the
attacker, we can consider either of the following problems:
(a) An attack can happen every epoch; OR (b) An attack
can happen only once across all epochs. We focus on (a),
because it is the more generic of the two. However, as we
show in our later sections, minor modifications to the solu-
tion approach for (a) solves (b).

Let .A° denote the set of targets that if attacked would pro-
vide the highest utility for the attacker at a decision epoch e
given the coverage vector. In SSE, the opponent is assumed
to pick one target from .4° at each decision epoch e that pro-
vides the highest utility for themselves. Given a coverage
vector C*° for a decision epoch, the utility for the defender
and the attacker when attacking a target ¢ is:

Up,e(t,C%) = c{Ug (t) + (1 = c))Ug(t) (1)
Upe(t,C%) = iU (1) + (1 = c))UG (1) ()

respectively. While the coverage vector represents the so-
lution for the Stackelberg representation, the final outcome
required of solving the MRT problem is a daily plan for each
patrolling group over the span of their horizon, . The cru-
cial objective in deriving this daily schedule is to keep the
overall distance traveled by the patrolling groups to a mini-
mum, so that most of the time is spent in securing the train
stations and not in traveling.

Approach: RaPtoR

We now describe the RaPtoR (Randomized Patrols for Rail
networks) algorithm. RaPtoR is divided into two phases:
Phase 1: compute the Strong Stackelberg Equilibrium
(SSE) coverage for all the targets over all decision epochs
by solving the Stackelberg representation of the problem.
Phase 2: compute execution plans for individual patrolling
groups over the entire horizon based on the coverage sam-
ples generated from the coverage distributions in phase 1.

Connecting the equilibrium coverage strategies of each
decision epoch at runtime with generating execution plans
is one of the main contributions of this paper and as we will
show in our experimental section, this allows for a signifi-
cant increase in scalability.

Computing SSE coverage for targets

Algorithm 1 GetCoveragel (T, P, H, Us, Uy)

e+ H

foralle > 1do
c® <= SOLVELPI (T, P, e, Up,e, Uy e)
e<—e—1

end for

return c

Initially, we focus on the problem where an attacker can
potentially attack at every decision epoch. Due to indepen-
dence of attacks, we can compute the coverage for each deci-
sion epoch just based on the utility vectors for that epoch and
independent of utility or coverage vectors at other epochs.
Algorithm 1 calls the SOLVELP1() function for each deci-
sion epoch to compute the corresponding coverage vectors.

SOLVELPI(T, P, e, Uge, Uy e):

max d

a; € {0,1} vteT (3)
Zaf =1 “)

teT
c; €0,1] veeT (5)
Y <IPl (6)

teT
d—Upo(t,C)<(1—a$)-Z2 VteT (1)
0<k—Up(t,C)<(1—aS)-Z VT (8

The function SOLVELP1 computes the Strong Stackelberg
Equilibrium for a given decision epoch e, given the attacker
(Uy,e) and defender (Uy) utility functions for that epoch.
The objective of this LP is to compute a coverage vector that
will maximise the utility obtained by the defender, where in
the attacker will choose a target that will maximize his/her
utility given the coverage vector. This optimization problem
was previously introduced by (Kiekintveld et al. 2009). ajf
is a binary variable, that if set to 1 indicates that the attacker
will attack target ¢ at this decision epoch e. cf is a continu-
ous variable, which indicates the desired coverage required
a target ¢ at decision epoch e. Z is a large positive constant.
d and k are intermediary variables.

(3) and (4) enforce the condition that only one target can
be attacked at an epoch. (5) constrains coverage for a target
at an epoch to less than 1 and (6) ensures that the number
of targets covered is bounded by the number of patrol teams
available. Utility for the defender is determined by the at-
tack vector selected by the attacker according to (7) and (8)
ensures that the attacker plays a best response deterministic
strategy to the coverage vector employed by the defender.
Finally, the objective is to maximize the utility obtained by
the defender.

Now, we explain the minor modifications required to ac-
count for the fact that an attack can happen only once over
the entire horizon: (a) Instead of one optimisation problem
to be solved for each decision epoch, we now have one op-
timisation problem that yields the coverage vectors for all
decision epochs. (b) An attack can occur only once over the
entire time horizon and on only one target and therefore the
constraint (4) is modified as follows: >, > 4 af = 1.
(c) Constraints (5), (7), (8) have to not only iterate over tar-
gets (Vt € T), but also have to iterate over decision epoch
Ve < H).

Sample |
[2 . ' 4 >©
> >

Sample 2 Sample 3

- Represents a sequence of paths for
each of the five resources
Figure 2: Example problem

Computing Execution Plans

The second phase of the algorithm computes an execution
plan for each patrol team given the coverage samples ob-
tained from coverage vectors at each decision epoch. In rail
networks, typically, all stations are reachable from all other
stations given enough time. Due to this reachability, unlike
previous work (Jain et al. 2010), we can always find paths
connecting coverage samples derived from coverage vectors.

A coverage sample, S° represents a set of targets to be
covered (by all patrol teams) at a decision epoch and is
obtained by sampling the coverage vector for that decision
epoch, C°. Formally, an execution plan for a patrol team is
represented as a sequence of targets, (t!,¢2,...t7), where t°
is a target within the coverage sample S°¢ .To maximise the
time spent in patrolling stations, a desired property of this
algorithm is to minimize the maximum time taken to travel
between targets by any patrol team.

Figure 2 provides an illustration of the problem once the
coverage samples are generated from the coverage vectors
at each decision epoch. In this example, we have three cov-
erage samples and the goal is to compute execution plans

Algorithm 2 GetExecutionPlan (#, C)
DM 0
o« 0
e+ H
foralle > 2 do
S¢ < GETSAMPLE(C®)
S¢71 « GETSAMPLE(C®™ 1)
(D71 T1°7!,x°) < STITCHSAMPLES (S°~ !, S¢, D¢, I1°)
end for
return x

for five patrol teams. The number of sequences are expo-
nential in the number of epochs and in the general case, an
exact algorithm which minimizes the overall distance cov-
ered would have exponential complexity. Dark black lines
indicate one set of execution plans.

To account for this complexity, we provide a dynamic pro-
gramming algorithm that stitches plans — computed for adja-
cent decision epochs — together over the entire time horizon.
In the example of Figure 2, we first compute the execution
plans corresponding to Sample 2 and Sample 3 given the dis-
tance function between all targets (represented as dist, p).
Then, we compute the solution for Sample 1 and Sample 2,
using the execution plans computed for the Sample 2 and
Sample 3 combination. This is a highly scalable algorithm
whose complexity increases linearly with time horizon, H.

Algorithm 2 provides the execution plan over the entire
horizon for all patrol teams and to that end, employs the
STITCHSAMPLES function to compute the execution plans
between coverage samples at two adjacent decision epochs.
To capture dependencies among targets to be visited across
non-adjacent epochs, the solution for the future epochs (dis-
tance - D°, plan - II®) is passed as an argument to the
STITCHSAMPLES function. “A station cannot be visited by
the same patrol team within the same shift” is an example of
a dependency/constraint that spans non-adjacent epochs.

We now describe the mixed integer optimization em-
ployed by the STITCHSAMPLES function. Let S¢(k) denote
the kth target in the eth sample. z7 ; = 1 indicates that the
team patrolling S¢(i) is also used for patrolling S¢1(j).
I1¢(7) denotes the set of targets covered by one patrol team
which has to patrol the target S¢(i) from epoch e to H.
De(j) denotes the distance traveled from S°(j) at decision
epoch e to horizon .

STITCHSAMPLES (S¢, S¢t1, Detl T1e+1):

min d

> g =1,9j)

> xf=1Vi (10)
J

d > ;- distge (i), ser () + D)), Vi, j (11)

zf 5 = 0,if S°(i) € 1T (), Vi, j,e (12)

mij € {07 1}7V7’7J (13)

The objective of the optimization model is to minimize the
maximum distance traveled by any team. (9) and (10) ensure

that one target at e is connected to only one target at e + 1
and vice versa. (11) computes the maximum of the distances
traveled by the patrol teams. (12) ensures that no target is
visited multiple times by the same patrol team during their
shift.

To simplify discussion, we have not included in the above
model the following practical constraints that usually need to
be satisfied. (a) Each team should have at most two breaks
and the breaks should not be adjacent to each other. We deal
with this constraint in the following subsection.

(b) The amount of time spent traveling to the next target by a
patrol team should be less than 15 minutes. We will discuss
this further in the experimental results.

Accounting for Breaks Another practical consideration
in patrol scheduling is to include breaks for every patrol
team. In the case of Singapore MRT patrols, the constraint is
to schedule two breaks for every patrol team, while consid-
ering the adversary and keeping the schedule randomized.
Accounting for breaks requires two minor changes to the
phase 2 of RaPtoR:

(1) Add extra nodes to each coverage sample. These nodes
correspond to the nodes where a patrol team takes a break
and the total number of extra nodes is equal to the maximum
number of teams that can take a break at any epoch (typically
an input parameter decided by the security agency).

(2) Modify the constraints in the STITCHSAMPLES optimi-
sation problem to represent nodes not having incoming or
outgoing links (unlike the example in Figure 2). Further-
more, we also need to include constraints corresponding to
the number of breaks and their occurrence, such as there
have to be two breaks and they cannot happen in adjacent
decision epochs.

Theoretical Results As shown in (Kiekintveld et al.
2009), the first phase of our approach already provides SSE
coverage for all the targets. Here we show that the sec-
ond phase of our approach can guarantee optimality if our
problem setting is simplified as follows: (a) the objective in
STITCHSAMPLES is modified to minimize the total travel
distance for all teams as defined in (Lau and Gunawan
2012); (b) the constraints that span non-adjacent epochs do
not exist.

Proposition 1 If the objective is to minimize total distance
traveled by all patrolling teams, and there are no constraints
that span multiple non-adjacent epochs, then phase 2 of
RaPtoR computes optimal execution plans.

Proof Sketch We prove this by contradiction. Let us assume
there exists an optimal set of execution plans that are differ-
ent and better. We can then construct execution plans which
will perform better by using the execution plans generated
by our approach. B

Evaluation

We show the performance of our algorithms in the context of
the Singapore rail network for which we have the real data
set that provides the usage of the rail stations.

Data Set

Figure 1 provides the map of the rail stations in the network.
This map contains 108 stations spread over 7 lines covering
most areas in Singapore. We also refer to the 78 problem in
our results, which correspond to the stations on the 4 primary
lines. There are transfers allowed between various lines at
11 stations. In 2012, there are almost 2 million rides in a
single weekday', and hence the rail network operations and
safety are of prime importance.

Our data set provides the usage statistics for all the 108
stations during 19 hours? on each day. This data was col-
lected by a card system that records the arrival and depar-
ture of passengers as they enter and exit various stations. We
consider the volume of passenger flow at each station as the
potential loss for not patrolling that station at that specific
time and use that in the construction of the game theoretic
model. We assume a zero sum model, i.e. whatever is lost
by the defender is gained by attackers and vice versa.

Results

Firstly, we demonstrate the scalability of the two phases of
the RaPtoR algorithm. Figures 3(a-d) provide the run-time
performance of the algorithm. We primarily focus on the
case where an attack can happen at every decision epoch.

In Figures 3(a,b), we present the run-time results’ on the
Singapore MRT network with 78 stations. We also exper-
imented with 108 station problem and very similar results
were obtained. On X-axis we have the number of resources?,
while on the Y-axis, we have the total run-time. The runtime
for phase 1 is in Figure 3(a) and for phase 2 in 3(b). Each
line in the graphs represents runtime for a different horizon
(ranging between 8 to 12) of the execution plans. Here are
the main observations and conclusions from the results in
Figures 3(a,b):

e The key result is that even with a horizon of 12 and num-
ber of resources equal to 35, we obtain solutions in less
than 4 seconds.

e As we increase the number of resources and horizons,
run-time for both phases increases, but not significantly.

In the second set of runtime results provided in Fig-
ures 3(c,d), we deal with additional random problems with
many more stations to demonstrate the overall scalability of
the algorithm. We plot the time taken by phase 1 and phase
2, as the number of resources are varied from 15-35 with the
number of stations taken from the set {78, 108, 120, 150,
180}. As shown in the figures, the overall time taken in both
phases is less than 10 seconds.

Figure 3(e) provides the average time spent in traveling
per epoch by each of the patrol teams. While we do not
enforce the constraint of 15 minutes in travel time between
targets at adjacent epochs, we obtain average travel times

"http://www.smrt.com.sg/AboutSMRT/InvestorRelations/
KeyOperatingMatrix/Trains.aspx

2MRT stations closed from 12:00 - 5:00 AM.

3RaPtoR was run on a 1.8 GHz Intel Core i5 with 8 GB RAM
to obtain the runtime results.

*We use resources and patrolling teams synonymously

“Horizon8 *Horizon9 ~Horizon 10 ~Horzon 11 ~Horizon 12

Horizon 8 Horizon 9 Horizon 10-Horizon 11 Horizon 12
4

-
=3

\
\
\
Runtime Phase 1 (in sec)
o o & o o

Runtime Phase 2
(seconds)

55 0 5] ¥
Numberof Resoures Number o Resources

H20 M5 F30 B35

108 120 150 180
Number of Targets

“+Horizon 8 “*Horizon 9 * Horizon 10 *Horizon 11 Horizon 12

H20 W25 F30 B35

£
£
8
§
8 \
g
E
;7\
[—
1] T \;“\;
1d |||I 5T
£]
A1 ol II I
i
H

15 0 5 0 k)
Number of Targets Number of Resources:

= o oo

0

Runtime Phase 2 (in sec)
~

Figure 3: (a-d): Runtime performance of RaPtoR phase 1 and phase 2; (e) Travel time performance of RaPtoR phase 2

o o] s L O G

o L] m
Kranji B Woodlands B Sembawang
Yew Tee k@ T ik unction (T G o Vishun &
o) S e
8 Choa Chu Kang Kz @ o Khatib
& Yio Chu Kang &
i Hillview g &
o T Bukit Gombak e @
: Beauty World e R
I-I Tuas West Road King Albert Park -q
: 1 Bukit Batok £ @ Sulhmnue-n
i s Cescen Tan Kah Kee
1
\ Botanic Gardens
b I Gl Circle
\ hm« Lakeside Jurong East &)
N = @ik Farrer Road
.I_ﬁ—n—b—b—b—l e m
q 5

Figure 4: Screenshot of the Patrol Scheduler

less than 15 minutes with our phase 2 approach. On the X-
axis, we have the number of resources and on the Y-axis, we
have the planned travel time in minutes. We provide the re-
sults for horizons 8-12 and on problem with 78 stations. The
phase 2 approach is not optimal when there are constraints
spanning multiple non-adjacent epochs, which in fact, are
present in the Singapore data set. Even though the approach
is not optimal, it retains a nice property of the optimal al-
gorithm, i.e., as more resources are provided, our phase 2
algorithm is able to find better execution plans with respect
to distance traveled.

As a sanity check, we verified that the coverage obtained
for each of the targets from phase 1 with more resources
is higher than the coverage with fewer number of resources
even with only 100 samples on a problem with 78 targets.
Also, we developed a decision support system for possible
deployment in the future. Figure 4 displays a screenshot for
our patrol scheduler.

We have conducted some initial experiments for the
case where attacks can happen only once over the entire
horizon. The phase 1 of the modified approach solves the
problems of 78 and 108 stations with 35 resources in less
than 5 seconds. It should be noted that phase 2 results are

independent of the assumptions on attacks.

Acknowledgements We wish to thank Prof. Milind
Tambe for insightful discussions on the patrolling for mass
rapid transit systems.

References

Chu, S. C., and Chan, E. C. 1998. Crew scheduling of light
rail transit in hong kong: from modeling to implementation.
Computers and Operations Research 25(11):887 — 894.

Elizondo, R.; Parada, V.; Pradenas, L.; and Artigues, C.
2010. An evolutionary and constructive approach to a
crew scheduling problem in underground passenger trans-
port. Journal of Heuristics 16(4):575-591.

Jain, M.; Kardes, E.; Kiekintveld, C.; Tambe, M.; and Or-
donez, F. 2010. Security games with arbitrary schedules: A
branch and price approach. In AAAL

Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS.

Lau, H. C., and Gunawan, A. 2012. The patrol scheduling
problem. In Practice and Theory of Automated Timetabling
(PATAT).

Ordonez, F.; Tambe, M.; Jara, J. F.; Jain, M.; Kiekintveld,
C.; and Tsai, J. 2012. Deployed security games for patrol
planning. In Handbook on Operations Research for Home-
land Security.

Sharma, D.K. Ghosh, D. G. A. 2007. Lexicographic goal
programming model for police patrol cars deployment in
metropolitan cities. International Journal of Information
and Management Sciences.

Stern, Z., and Teomi, Y. 1986. Multi-objective scheduling
plans for security guards. Journal of the Operational Re-
search Society.

Tambe, M. 2012. Security and game theory. Cambridge
University Press.

Tsai, J.; Rathi, S.; Kiekintveld, C.; Ordonez, F.; and Tambe,
M. 2009. Iris - a tool for strategic security allocation in
transportation networks. In AAMAS.

Yin, Z.; Jiang, A.; Johnson, M.; Tambe, M.; Kiekintveld,
C.; Leyton-Brown, K.; Sandholm, T.; and Sullivan, J. 2012.
Trusts: Scheduling randomized patrols for fare inspection in
transit systems. In JAAL

