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Abstract
This research is motivated by large scale problems in urban
transportation and labor mobility where there is congestion
for resources and uncertainty in movement. In such domains,
even though the individual agents do not have an identity of
their own and do not explicitly interact with other agents, they
effect other agents. While there has been much research in
handling such implicit effects, it has primarily assumed de-
terministic movements of agents. We address the issue of
decision support for individual agents that are identical and
have involuntary movements in dynamic environments. For
instance, in a taxi fleet serving a city, when a taxi is hired by
a customer, its movements are uncontrolled and depend on
(a) the customers requirement; and (b) the location of other
taxis in the fleet. Towards addressing decision support in such
problems, we make two key contributions: (a) A framework
to represent the decision problem for selfish individuals in a
dynamic population, where there is transitional uncertainty
(involuntary movements); and (b) Two techniques (Fictitious
Play for Symmetric Agent Populations, FP-SAP and Soft-
max based Flow Update, SMFU) that converge to equilibrium
solutions. We show that our techniques (apart from providing
equilibrium strategies) outperform “driver” strategies with re-
spect to overall availability of taxis and the revenue obtained
by the taxi drivers. We demonstrate this on a real world data
set with 8,000 taxis and 83 zones (representing the entire area
of Singapore).

Introduction
Research on understanding and controlling dynamic and
large scale flow of agents (e.g., humans, industries, vehicles)
between different states spans various domains such as ur-
ban transportation (Wardrop 1952; Yang and Wong 1998)
(e.g., movement of vehicles between different regions of
an area), industry dynamics (Weintraub, Benkard, and Roy
2006) (e.g., strategizing on marketing investments by dif-
ferent companies selling the same product), labor mobility
between cities (Harris and Todaro 1970) (e.g., analyzing in-
dividuals search for jobs in new locations), advertising and
others (Alpern and J.Reyniers 2002). The main challenge
in these problems is accounting for the implicit interaction
that exists between agents. For example, vehicles trying to
get on the same road are implicitly competing. These diffi-
culties in analyzing/controlling road traffic are dealt with by
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the concept of user equilibrium, which was first proposed by
Wardrop (Wardrop 1952). Unfortunately, the solution con-
cept of user equilibrium does not apply to our analysis di-
rectly due to the presence of involuntary movements.

We are focused on similar problems, except in cases
where agents can have involuntary (or forced) movements.
One key problem of interest is with respect to the opera-
tion of a taxi fleet. Taxi drivers are subject to both voluntary
(at driver’s own decision) and involuntary (when customers
board taxis) movements. Different regions might have dif-
ferent demands for taxis (both in terms of numbers and rev-
enues) and due to this an implicit competition exists between
taxis. The goal here is to improve the operational efficiency
of the fleet and the revenues obtained by taxi drivers. Similar
problems exist in analyzing industry dynamics (where dif-
ferent companies strategize to maintain their competitive ad-
vantage)and labor mobility (where individuals reason about
their movement to different geographical regions). Unfor-
tunately, due to the presence of involuntary movements and
the scale of problems involved, the user equilibrium solution
concept is not applicable.

To account for large-scale problems (e.g., 8,000 taxis in
the taxi problem) encountered in domains of interest, we
provide techniques that exploit symmetry or identical nature
of agents in DDAP problems. The first set of techniques is
based on iterative update of best response in a fashion sim-
ilar to Fictitious Play for normal form games. Secondly, we
provide a suite of greedy randomization techniques which
rely only on immediate rewards.

The primary example we will base our discussion on
throughout the paper is the analysis of a taxi fleet. In most
metropolitan areas, taxi is an important class of public trans-
portation (e.g., in Singapore, taxi accounted for 17% of
public transportation in year 2007/08). However, even after
decades of improvement, the operational efficiency of a typi-
cal taxi fleet is still not very satisfactory (based on our analy-
sis, a taxi on average spends more than 50% of time idling or
roaming to find customers). From the policy maker’s point of
view, understanding how to improve the efficiency of the taxi
service is of vital importance, since large amount of taxis
constantly roam the city area, and even an improvement of
few percentage points would mean savings of millions of
man hours per year (for both drivers and customers). The
incentive structure of taxi drivers in most cases allows taxi
drivers to pay a fix rent and keep the rest of the revenue. This
implies that taxi drivers are typical selfish agents that would



only react to incentive and cannot be controlled centrally. In
DDAP model of the taxi problem, we employ an objective
function that optimizes the taxi driver’s revenue directly and
the operational efficiency of the fleet indirectly (through its
transition function).

We were able to illustrate that our equilibrium approaches
and one of the greedy approaches provide solutions that im-
proved significantly over real world taxi driver policies. This
improvement was with respect to both the (a) operational
inefficiency, characterized as starvation in our results; and
(b) the minimum revenue obtained by any taxi driver and
the average revenue of all the taxi drivers. These results em-
phasize the utility of our equilibrium approaches and greedy
techniques in solving DDAP problems.

Motivating Domain: Taxi Fleet Optimization
In a M zone region to be covered by a taxi fleet, P , the goal
is to provide decision support to individual taxis on their
next zone so that the performance (with respect to driver
revenues and availability of taxis) is improved. Movement
of taxis between zones is controlled by the underlying cus-
tomer flow (people moving between zones) between zones
and the number of taxis in the current zone.

More specifically, for two zones i and j at time t, there
is an (average) underlying customer flow flt(i, j). For zone
i, if there are more number of customers in the zone
(
∑
j flt(i, j)) than the number of taxis in that zone (di), then

all taxis will get customers and get sent to a zone depend-
ing on the the relative ratio of flt(i,j)∑

j flt(i,j) . In other words,
their zone transition will follow the underlying probability;
also, all of them will receive revenue Ret(i, j) and incur
cost Cot(i, j). Similarly, there is an underlying probability
if there are not enough taxis in a zone for all customers.

Given the movement probability, the goal is to increase
revenues for individual drivers and the availability of taxis
across all zones.

Model: DDAP
We now describe a general representation called the De-
centralized Decision model for Agent Populations (DDAP)
as a model to represent the decision problems for individ-
ual agents in a population operating in dynamic domains
(like the taxi fleet optimization problem, labor mobility and
strategizing in industry dynamics). It is represented using the
tuple:

〈
P,S,A, φ,R, H, d0

〉
, where P represents the agent

population. S corresponds to the set of states encountered
by every agent in the population. A is the set of actions exe-
cuted by each agent. This would be equivalent to a repeated
congestion game with transition uncertainty.

Before defining the transition and the reward function, we
first define the set of state distributions,
D = {d|d =

〈
d1, d2, · · · , d|S|

〉
,
∑
s∈S ds = |P|}, where

ds represents the number of agents in state s. φ models
the involuntary movements of agents and more specifically,
φtd(s, a, s

′) represents the probability that an agent in state
s(∈ S) after taking action a(∈ A) would transition to state
s′, when the current state distribution is d and time is t.
Rtd(s, a, s′) is the reward obtained by an agent when in

state s, taking action a and moving to state s′ when the dis-

tribution of agents is d at time t. H is the time horizon for
the decision process. d0 represents the starting distribution
of agent states. Expected value for an agent starting from
state s with a starting distribution, dt is defined as

V t(s, dt) = max
πt
{
∑
a

πts,a
∑
s′

φdt(s, a, s
′)

[Rdt(s, a, s
′) + V t+1(s′, dt+1)]} (1)

The objective is to compute a policy,{πt}H1 for each agent,
so that no agent has an incentive to deviate with respect to
expected value over the horizon.

DDAP for the Taxi Problem
P represents the set of taxis in the fleet. S refers to the set of
all zones in which a taxi could be present.A refers to the set
of next zones (A ≡ S). Equation 2 provides the expression
for computing the transition probability between states. The
intuitions behind the expression are three fold as formalized
by the conditions C1, C2 and C3: (a) The taxi is always
hired if the flow of customers out of a zone is higher than the
number of taxis currently in that zone. Hence, the probability
of moving to a specific zone s′ is directly proportional to the
customer flow between s and s′. (b) When the intended zone
(the action) is not the destination zone, then it implies the
taxi was hired. (c) When the intended zone is same as the
destination zone, then a part of the probability is due to the
taxi getting hired and a part of the probability is due to the
intended movement of the taxi.
C1: if

∑
ŝ flt(s, ŝ) ≥ ds

C2: if a 6= s′,
∑
ŝ fl

t(s, ŝ) < ds
C3: if a = s′,

∑
ŝ flt(s, ŝ) < ds

φtd(s, a, s
′) =


flt(s,s′)∑
ŝ flt(s,ŝ) C1

flt(s,s′)
ds

C2

1−
∑

ŝ 6=s′ flt(s,ŝ)
ds

C3

 (2)

R is the revenue obtained by taxi drivers while accounting
for the cost of driving between zones.Rt(s, a, d) =

∑
s′ φ

t
d(s, a, s

′) · (Ret(s, s′)− Cot(s, s′)) C1∑
s′ φ

t
d(s, a, s

′) · (Ret(s, s′)− Cot(s, s′)) C2
flt(s,s′)
d(s) · Ret(s, s′)− φtd(s, a, s′) · Cot(s, s′)) C3

 (3)

H corresponds to the number of discrete intervals of a day
that are being considered. Finally D0 is obtained by aggre-
gating taxi distributions at the starting time in the dataset.

In solving a DDAP, each agent maximizes expected rev-
enue for the individual taxi drivers. However, the transition
function depends on the number of taxis in the zone and
maximizing expected revenue implies minimizing starvation
as well. In this problem domain, both the welfare metrics
(revenue and starvation) are optimized at once, however, in
other domains there could be multiple objectives that are
not in alignment and multi-objective reasoning might be re-
quired.

Solving the DDAP Model
We now describe two techniques for solving the DDAP
model to obtain a policy for each agent. Our approach is to



convert DDAP to a symmetric game and compute a symmet-
ric equilibrium. While this may or may not be the ideal Nash
equilibrium (in terms of social welfare), we show that it pro-
vides better performance than existing human strategies and
benchmarks.

The policy for an agent in DDAP can be formally defined
as π =

〈
π0, π1, · · · , πH−1

〉
, where πt : S × A → R[0,1]

is a mapping from states and decision epochs to a probabil-
ity distribution over actions. The probability of executing an
action a at time t according to policy π is given by πt(s, a).
This policy can be both randomized (non-zero probabili-
ties for multiple actions) and non-stationary (different action
probabilities for different decision epochs).

An agent in DDAP can be considered to have initial state
distribution where an agent starts in s is d0(s)∑

s′ d
0(s′) ). Then,

all agents have identical strategy space, with no type, and
have utilities depending only on π and joint strategy from
other agents. An implication of this is that the DDAP can be
represented as a symmetric repeated game.

Given agent state distribution over the horizon,
d =

〈
d0, d1, . . . , dH−1

〉
, the single agent’s optimal plan-

ning problem can be modeled as a Markov decision process
(MDP), and the standard dual LP formulation (Puterman
1994) for computing a policy that maximizes the expected
reward is:

SOLVEMDP(ddap, d) :

max
∑
t,s,a

Rt(s, a, d) · xts,a

s.t.
∑
a

xts′,a − γ
∑
s,a

xts,a · φtd(s, a, s′) = δt(s′),∀t

xts,a ≥ 0,∀s, a, t; 0 ≤ γ < 1, (4)

where xts,a represents the number of times action a has been

chosen in time t and state s, and δt(s) = dt(s)∑
s′ d

t(s′) is the
likelihood that agents are in state s in time t. The agent pol-
icy can then be obtained by normalizing {xts,a}:

π = {πt(s, a) : πt(s, a) =
xts,a∑
a′ x

t
s,a′

,∀t, s}.

Similarly, given d0 and π, the agent state distribution over
the whole horizon can be computed as follows:

GETDIST(ddap, π) :

δ0(s)← d0(s)

|P|
,

δt+1(s)←
∑
s′∈S

δt(s′)
∑
a∈A

πt(s′, a)φtdt(s
′, a, s), t < H − 1,

dt+1(s)← δt+1(s)|P|, ∀t.
Given a particular agent distribution assumption d, all

agents will generate identical best responses, which can be
computed by SOLVEMDP(ddap, d). This suggests an intu-
itive iterative procedure for computing the equilibrium:

1. Generate an arbitrary initial policy, π0. Assume that all
agents adopt π0, and compute the resulting agent state dis-
tribution d0 ← GETDIST(ddap, π0).

2. Let current iteration be i + 1. Assume that the agent
state distribution is di, solve SOLVEMDP(ddap, di) for
the best response πi+1. The new agent state distribu-
tion by adopting πi+1 can be computed by di+1 ←
GETDIST(ddap, πi+1).

3. If πi = πi+1, the process converges, stop. Otherwise, i←
i+ 1, repeat the previous step.

If the above procedure converges, we know that the obtained
π will be a symmetric equilibrium, since π is the best re-
sponse onto itself.

In game-theoretic terms, the above procedures are what
researchers called best response dynamics; since an agent re-
peatedly computes best response assuming all other agents
play the strategies in the previous iteration. Although the
best response dynamics is simple and intuitive, the fact
that it disregards all past plays makes it vulnerable to
non-convergence or cyclic plays for most problems. In
the next two subsections, we describe two techniques that
are inspired from an iterative procedure that is well stud-
ied and commonly used for learning in games called the
fictitious play (FP) algorithm, which was introduced by
Brown (Brown 1951) and Robinson (Robinson 1951).

Fictitious Play for Symmetric Agent Populations
(FP-SAP)

Algorithm 1 FP-SAP(ddap)

1: π0 ← GETRANDOMPOLICY()
2: i← 0
3: repeat
4: di ← GETDIST(ddap, πi)
5: {x̃ts,a} ← SOLVEMDP(ddap, di)

6: xts,a ←
(i·xt

s,a+x̃
t
s,a)

i+1 ,∀ s, a, t

7: πti(s, a)←
xt
s,a∑

a x
t
s,a
,∀ s, a, t

8: i← i+ 1
9: until πi = πi−1

The fictitious play (FP) algorithm (Brown 1951) is one of
the oldest learning algorithm for computing Nash equilib-
rium in games. The key idea in FP algorithm is that it repeat-
edly computes best response by assuming that other agents
are to play according to their historical distributions (i.e.,
other agents will pick one of their past plays uniformly).
The FP algorithm in general does not converge, however,
for certain classes of games (most notably, zero-sum games,
identical interest games and potential games (Monderer and
Shapley 1996)), it does converge. A key drawback of FP al-
gorithm has been their limited applicability to large scale
problems (with lots of agents).

Since DDAPs are used to represent large agent popula-
tions (e.g., for modeling domains like taxi operations, labor
mobility, or crowded theme park), a key result desired of
any algorithm used to solve DDAPs is its scalability with re-
spect to number of agents. The implementation of a DDAP-
specific FP algorithm (which we call it FP-SAP, the Ficti-
tious Play for Symmetric Agent Populations) is illustrated
in Algorithm 1. There are two distinct features in FP-SAP



which allow for scalability to large agent populations:
(1) The strategy profile to be searched is symmetric (all
agents are identical and the game is symmetric), thus only
one best response computation is needed in each iteration.
(2)The best response is computed by solving a MDP, while
the impact of all other agent’s strategies is limited to the ag-
gregate agent population distribution, d.

To see the significance of the above two features, con-
sider a generic stochastic game, in which agents can have
global states and tight transition/reward dependence on each
of the other agent actions. This exponentially increases the
complexity of the best response computation, since the best
response computation for an agent would require accurate
tracking of other agent’s individual states and actions at each
time step (instead of an aggregate distribution).
Proposition 1 Fictitious play algorithm converges to Nash
Equilibrium if GETDIST() can be used for updating agent
state distributions.
Proof. We prove this proposition by showing that there ex-
ists a potential function, φ for a DDAP game with one type.
Since a fictitious play algorithm converges to Nash Equilib-
rium for potential games, therefore SoFA will converge to
Nash Equilibrium if there exists a potential function.

The potential function, φ for a horizon t DDAP problem
is defined as follows:

φt({πi}i∈P) =
∑
k

Vt
k(πk, {πi}i 6=k,i∈P) (5)

To show that this is a potential function for a given DDAP, we need
to show that for any arbitrary agent k and two of its policies, π(k,1)

and π(k,1):

φt({πi}i 6=k,i∈P ∪ π(k,1))− φt({πi}i 6=k,i∈P ∪ π(k,2))

= Vt
k(π(k,1), {πi}i6=k,i∈P)− Vt

k(π(k,2), {πi}i6=k,i∈P) (6)

We show that this is a potential function for a DDAP game
by using mathematical induction on horizon t.

Base case: t = 0
The value function for an agent is defined as follows:

V0
k(π(k,1), {πi}i6=k,i∈P) =

∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0)

Since the one step rewards are only dependent on d0 and
it is the same for all agents, the difference in potential func-
tions is equal to difference in value functions for the different
policies of agent k.

Therefore, let us assume that the φ is a potential func-
tion for horizon t = m, i.e.
φm({πi}i 6=k,i∈P ∪ π(k,1))− φm({πi}i 6=k,i∈P ∪ π(k,2))
= Vmk (π(k,1), {πi}i 6=k,i∈P)− Vmk (π(k,2), {πi}i 6=k,i∈P)

(7)
Now, we will prove that it holds for t = m+ 1

Vm+1
k (π(k,1), {πi}i6=k,i∈P)

=
∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0)

+
∑
s,a,s′

p0k(s) · π(k,1)(s, a) · φk(s, a, s
′, d0)·

· Vm
k (s′, π(k,1), {πi}i 6=k,i∈P)

From equations used in GETDIST()

=
∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0)

+
∑
s′

p1k(s
′) · Vm

k (s′, π(k,1), {πi}i 6=k,i∈P)

=
∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0) + Vm

k (π(k,1), {πi}i 6=k,i∈P)

(8)

Using Equation 8, we have

Vm+1
k (π(k,1), {πi}i 6=k,i∈P)− Vm+1

k (π(k,2), {πi}i 6=k,i∈P)

=
∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0)

−
∑
s,a

p0k(s) · π(k,2)(s, a) · Rk(s, a, d
0)

+ Vm
k (π(k,1), {πi}i6=k,i∈P)− Vm

k (π(k,2), {πi}i 6=k,i∈P)

From the assumption of Equation 7

=
∑
s,a

p0k(s) · π(k,1)(s, a) · Rk(s, a, d
0)

−
∑
s,a

p0k(s) · π(k,2)(s, a) · Rk(s, a, d
0)

+
∑

{i 6=k,i∈P},s,a

p0i (s) · πi(s, a) · Ri(s, a, d
0)

−
∑

{i 6=k,i∈P},s,a

p0i (s) · πi(s, a) · Ri(s, a, d
0)

+ φm({πi}i 6=k,i∈P ∪ π(k,1))− φm({πi}i6=k,i∈P ∪ π(k,2))

Combining terms using the definition of potential function (Equa-
tion 5), we have

= φm+1({πi}i 6=k,i∈P ∪ π(k,1))− φm+1({πi}i 6=k,i∈P ∪ π(k,2))

Hence proved. �

Soft-Max-based Flow Update (SMFU)
FP-SAP presents an algorithm for solving DDAPs, where
the best response part of the algorithm is scalable. However,
there is no guarantee on the number of iterations it will take
until convergence to the equilibrium and as we show in our
experimental results, it can be very slow. To address this, we
introduce our second contribution called the soft-max-based
fictitious play. It is a standard result in MDP literature (Put-
erman 1994) that solving an MDP yields a deterministic pol-
icy, i.e. all the flow out of any state is due to only one action.
Intuitively, it means that there is a sharp increase or decrease
in the aggregate flows of one action after each iteration of FP
and hence the aggregate flows can potentially take many it-
erations to converge.

To address this, we employ soft-max value iteration
(SMVI) introduced by Ziebart et al. (Ziebart 2010) for solv-
ing MDPs. Soft-max or soft maximum approximates the
hard maximum and is a convex function similar to the hard
maximum. The key difference is that while hard maximum
has sharp edges, soft maximum is smooth. Softmax of two



Figure 1: Soft-max and Max of two linear functions

Algorithm 2 SMVI(S,A, P,R)

1: V(s)← 0,∀s
2: while not converged do
3: V(s)← V ′(s),∀s
4: V ′(s) ← softmaxa{R(s, a) +∑

s′ P (s, a, s
′)V(s′)},∀s

numbers x, y is defined as log(ex + ey). To get a better pic-
ture of the difference between max and soft-max, please re-
fer to the picture of Figure ??.

SMVI computes a policy that maximizes the causal en-
tropy. The only difference between SMVI and standard
value iteration is the use of soft-maximum instead of max-
imum in the computation of Vt(s). It computes policy at a
state as follows:

π(s, a) = eV(s,a)−V(s)

V(s, a) = R(s, a) +
∑
s′

P (s, a, s′)V(s′)

V(s) = softmaxaV(s, a)

SMVI computes policies that have the highest entropy
possible while minimally (near optimal solution quality)
reducing the overall expected value. Algorithm 2 (Ziebart
2010) provides the algorithm for SMVI. Once the policies
are computed using SMVI, we then compute the xs,a values
by executing the policies. SMFU has the same algorithm as
Algorithm 1, except that it employs SMVI for solving the
MDP in line 5. In our experimental results, we show that
there is a marked improvement in the performance of SMFU
over FP-SAP while converging to ε-nash equilibrium.

Experimental Results
To demonstrate the effectiveness of our approaches, in par-
ticular, the applicability of our approaches in a real-world
environment, we prepared two sets of data in our experi-
ments. The first data set is synthetic, and we have full control
over how flows, rewards, and costs are generated. We use
this data set to explore the performance of our algorithms
under different settings. The second data set is a month-
long operational data from a real-world taxi fleet. We use
this large-scale data set to demonstrate the real-world scala-
bility and the effectiveness of our approaches. In both stud-
ies, we look at the two performance metrics that we aim to
optimize earlier: (a) Revenue (both minimum and average)
of taxi drivers; and (b) Starvation for customers across all
zones.

To understand how our approaches fare against straight-
forward, myopic reasoning, we introduce a family of heuris-
tics based on the quantal response equilibrium (to be for-

mally introduced later). We also make comparison against
policy based on the one-step best response computation.

Experimental Benchmarks
Quantal response equilibrium (QRE) is a solution concept
first proposed by McKelvey and Palfrey (McKelvey and
Palfrey 1995). QRE allows bounded rationality to be in-
corporated in equilibrium seeking process (computationally
speaking, it implies errors are allowed in best reply com-
putation). One of the most common specification for QRE
is logic equilibrium (LQRE); i.e., agents assign probabil-
ity to each action according to the proportion of the ex-
pected payoff of this action over the sum of payoffs of all
actions. In LQRE, the parameter λ controls how rational
agents are: λ = 0 implies completely irrational, and agents
simply choose their actions uniformly, while λ → ∞ im-
plies perfectly rational, and agents play according to Nash
equilibrium.

In real-world taxi cruising, we observe that the percent-
age of drivers flowing into zone z during time t to be closely
correlated to the percentage of total out-bound trips from
zone z in time t (based on traces of about 8,000 taxis, the
R2 value is 0.6747 as illustrated in Figure 2(a)). If we view
the percentage of total out-bound trips as an approximation
to the expected payoff for choosing zone z in time t, this
close correlation implies that real-world cruising patterns of
taxi drivers are very similar to the one predicted by LQRE.
In subsequent graphs, we use L(λ) to represent the approx-
imated LQRE that follows the above insights.

Besides LQRE, we also define simpler greedy heuristics
that assign uniform probabilities to the top g actions (repre-
sented as G(g) in our graphs). Conceptually speaking, G(g)
is a limited version of L(λ = 0), in which agents can only
recognize the top g actions. These two classes of greedy ap-
proaches are outlined in Algorithm 3.

Finally, we also look at an online greedy approach (de-
noted as BR in graphs) that computes one-step best response
against the known state distribution of other agents.

Algorithm 3 Greedy(ddap, g, type, λ)

1: D̃ ← 0,R ← UPDATEREWARDSTRANSITIONS(D̃)
2: for all t ≤ H do
3: for all s ∈ S do
4: {O,R} ← SORTA({

∑
s′ φ0(s, a, s

′)R0(s, a, s
′)}a∈A)

5: for all i < g do
6: if type = quantal then
7: πt(s,O(i))← GETQUANTAL(O,R, λ)
8: else
9: πt(s,O(i))← 1

g
10: return π

Experimental Setup and Results
We experiment with two sets of data. Firstly, we created a
synthetic data set to test our approaches on different combi-
nations of flows and rewards/costs. We generated our syn-
thetic data set as follows: (a) Customer flows are randomly
generated based on different types of zones (office, residen-
tial, entertainment etc.). (b) Revenues and costs are gener-



ated according to structure of the map. We varied the overall
customer population and the number of zones.

The second data set is the real world data set obtained by
filtering and aggregating data over six months from a leading
taxi company in Singapore. In this data set we have 8,000
taxis (agents) traveling through 83 zones in Singapore. The
flows represented in this problem are the actual customer
flows aggregated over the span of a month. Here, we have
a horizon of 48 (corresponding to 30 minute intervals on a
24 hour weekday). The flows cannot be changed, so we run
with 10 different starting state distributions.
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Figure 2: (a) Correlation of inbound flow and outbound trips;
(b) Run-time performance of SMFU and FP-SAP.

FP-SAP and SMFU provide ε-equilibrium policies, i.e.,
drivers would not have an incentive more than ε to deviate
from the computed policy. This is a strong result especially
in large-scale problems with thousands of agents. However,
the policies are only useful if they are also shown to pro-
vide tangible benefits . This is the main theme of our ex-
perimental results section – to demonstrate the usefulness of
our equilibrium approaches in large scale problems such as
the taxi problem. In the taxi problem, we optimize revenue
(directly for taxi drivers) and starvation (indirectly for the
management) and these are our tangible metrics.

We have two sets of results in this section. Firstly, we will
provide the run-time performance of the FP-SAP and SMFU
algorithms on both the data sets . Figure 2(b) provides the
results of this experiment. X-axis denotes the scale of the
problems represented using the number of zones. Y-axis de-
notes the amount of time taken in seconds on a logarithmic
scale. As expected, the FP-SAP approach took a lot more
iterations to converge and consequently it took a lot more
time. There is at least an order of magnitude speed up pro-
vided by SMFU over FP-SAP for all the cases. For instance
in the 40-zone case, SMFU took 171 seconds on average
, while FP-SAP took 3216 seconds. Furthermore, FP-SAP
was unable to finish within our cut-off time of 3 hours from
problems with more than 40-zones. We have also included
the result for the real world taxi data set as part of this graph
(83 zone problem). For all instances of the real world prob-
lem, SMFU finished within 30 minutes. In the second set
of results, we compare SMFU1 with all the greedy heuris-
tics. Figure 3(a)-(c) are results on synthetic data set with 40
zones2 and Figure 3(d)-(f) are results on real world data set
with 83 zones and 8,000 taxis. Y-axis is the revenue obtained

1We obtained similar results with FP-SAP on problems where
we finished within the cut-off limit and hence are not shown here.

2We have results for the 20 zone and 60 zone cases. Those re-
sults look very similar to the ones for 40 zones.

in graphs (a),(b),(d),(e) (higher the better), while on (c), (f) it
indicates the number of people who did not get a taxi (over
the entire horizon) and hence lower is better. X-axis is the
number of people in the island (representative complexity of
the problem) who use taxis.

Here are some of the key conclusions that can be made
from the graphs:

• SMFU obtains higher minimum revenue than all greedy
heuristics on most cases (even considering the variance).
However, when population size is 4,000 on synthetic data
set, some of the greedy approaches obtain a higher mini-
mum revenue. This could be due to the fact that most of
the taxis are idle when population is low and since we op-
timize over average revenue (and not minimum revenue).

• With respect to average revenue and starvation, we out-
performed greedy heuristics by a significant margin on all
the cases. For instance, a SMFU driver makes about S$40
more than the next best greedy policy. Similarly, there are
about 5,000 more people served with our SMFU policies
than the next best greedy policy.
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Figure 4: Average revenue plot for 24 hours.

Figure 4 provides the average pay-off accrued by SMFU
in comparison with other greedy heuristics over the 30
minute intervals during the 24 hours. The peaks are during
the business hours 7:00 AM - 10:00 AM (14-20) and 5:00
PM - 8:00 PM (34-40). It can be noted that SMFU obtains
higher average pay-off across most times during the day.

These results indicate that symmetric Nash equilibrium
solutions can provide much better solutions than human
policies and typical benchmarks employed in the literature.

Related Work
In this section, we briefly describe research related to the
contributions made in this paper. The first thread of re-
lated research is in the field of transportation. User equilib-
rium (UE) is a classical and powerful equilibrium concept
in transportation explaining individual route choices in face
of competition for road usages from other users. Originally
proposed in static setting (Wardrop 1952), it was later ex-
panded to dynamic cases (where temporal choices are also
important) (Friesz et al. 1993). In either format, static or dy-
namic, the concept of UE provides a way to infer and to pre-
dict the behaviors of individual drivers; such ability helps
not just individual drivers to identify better routes, but it can
also help policy makers to properly design road network in
anticipation of driver’s responses. The most widely adopted
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Figure 3: Comparison of SMFU with Greedy heuristics on 40 zone synthetic data set and real world data set.

approach in computing UE is proposed by (LeBlanc, Mor-
lok, and Pierskalla 1975). Their approach is based on the
Frank-Wolfe algorithm, which essentially is an iterative pro-
cess that minimizes a function by repeating: 1) identify a
movement direction from the current point, 2) search for the
step size, 3) move to the next point. The iteration stops when
certain stopping criterion is met. While user equilibrium is
relevant, it does not account for the presence of in-voluntary
movements for agents.

The next thread of relevant research is due to Weintraub
et al. (Weintraub, Benkard, and Roy 2006; 2008). This re-
search introduces the concept of oblivious equilibrium for
large scale dynamic games. They provide a mean field ap-
proximation to solve problems where there is stochasticity
in state transitions. While, the problem is similar to DDAPs,
the assumption of mean field (or a stationary distribution of
taxis in our case) is not applicable in the context of taxi prob-
lems. In fact, there is a huge variance in the set of possi-
ble distributions at each decision epoch and hence oblivious
equilibrium is not directly applicable in our context.

DDAP model represents a subset of problems repre-
sented by the generic Partially Observable Stochastic Games
(POSG) model. There are many approaches (Seuken and
Zilberstein 2007; Velagapudi et al. 2011; Varakantham et
al. 2009) provided for solving identical payoff stochastic
games (also referred to as Decentralized POMDPs or DEC-
POMDPs). However, because the approaches typically as-
sume a unique identity to each of the agents, they cannot
scale to problems with 8,000 agents.
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