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Abstract
Rapid “urbanization” (more than 50% of worlds’
population now resides in cities) coupled with the
natural lack of coordination in usage of common
resources (ex: bikes, ambulances, taxis, traffic per-
sonnel, attractions) has a detrimental effect on a
wide variety of response (ex: waiting times, re-
sponse time for emergency needs) and coverage
metrics (ex: predictability of traffic/security pa-
trols) in cities of today. Motivated by the need to
improve response and coverage metrics in urban
environments, my research group is focussed on
building intelligent agent systems that make se-
quential decisions to continuously match available
supply of resources to an uncertain demand for re-
sources. Our broad approach to generating these se-
quential decision strategies is through a combina-
tion of data analytics (to obtain a model) and multi-
stage optimization (planning/scheduling) under un-
certainty (to solve the model). While we perform
data analytics, our contributions are focussed on
multi-stage optimization under uncertainty. We ex-
ploit key properties of urban environments, namely
homogeneity and anonymity, limited influence of
individual entities, abstraction and near decompos-
ability to solve ”multi-stage optimization under un-
certainty” effectively and efficiently.

1 Problems of Interest and Significance
Many decision problems in urban environments can be char-
acterised as requiring a match between limited resource sup-
ply and an unpredictable demand for resources. Given below
are a few practical real world urban decision problems of in-
terest to us:
• Taxi fleets: Resource supply corresponds to the available

taxis and demand corresponds to customers needing taxis.
The goal in this problem is to increase revenues for taxis (or
reduce wait times for customers) by continuously matching
available taxis to customer demand or proxies for customer
demand (ex: taxi stands).

• Bike sharing systems: Resource supply corresponds to
available bikes at base stations and demand corresponds
to customers needing bikes. The goal in this problem is to
reduce lost demand due to unavailability of bikes at base
stations. We are focussed on lost demand, as it can lead to
customers employing private vehicles, which in turn will

lead to increased carbon emissions and traffic congestion.
A similar problem is relevant to car sharing systems as
well.

• Emergency response: Resource supply corresponds to am-
bulances or fire trucks at base stations and demand corre-
sponds to emergency events. The goal in this problem is to
reduce response time for emergency events by dynamically
moving the ”right” ambulances to the ”right” base stations.

• Traffic patrol and Security: Resource supply corresponds to
traffic or security personnel at base locations and demand
corresponds to potential for traffic violations or security in-
cidents. The goal in this problem is to prevent traffic vio-
lations and security incidents by reducing predictability in
patrols of traffic/security personnel without sacrificing on
coverage of ”important” locations.

• Theme parks: Resource supply corresponds to attractions
and demand corresponds to patrons visiting the attractions.
The goal in this problem is to reduce wait times by pro-
viding decision support to patrons on visiting the ”right”
attractions at the ”right” times.

We now situate these urban decision problems in the con-
text of existing work in Artificial Intelligence and Operations
Research on general resource allocation problems. While
there are other factors (offline/online, objectives etc.), we cat-
egorise using the following three criterion to precisely high-
light differences between existing work and our work : (a)
Scale of problems; (b) Cooperative/Competitive nature of de-
cision makers (ones doing matching) or supply or demand;
and (c) Deterministic or Non-deterministic (Stochastic and
Dynamic) nature of the environment. Figure 1 provides this
categorisation identifying specific research threads in a cate-
gory using names of models/representations/frameworks. We
first describe the four categories associated with existing re-
search:
1. Deterministic and Cooperative Problems: In this cat-
egory, (Distributed) Constraint Satisfaction [Yokoo and
Hirayama, 2000] and (Distributed) Constraint Optimiza-
tion [Pragnesh Jay Modi and Yokoo, 2005] models have been
employed to represent problems where values (can represent
demand) have to be assigned to variables (resources) so as to
either maximize satisfaction of constraints or minimize cost
of constraint violations. Another representation in this cate-
gory is the Cooperative auctions [Lagoudakis et al., 2004]
framework, where a centralised authority decides the out-
come of an auction for either demand/resources among co-
operative entities.
2. Deterministic and Competitive Problems: Game The-
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Figure 1: Characterisation of existing research and our work (dotted oval with black fill). Key difference of our work is the
focus on large scale problems where there is stochasticity and dynamism.

ory provides natural models for strategic decision making
in the presence of competing entities. In this category, we
specifically consider game theoretic frameworks of relevance
to resource allocation, namely congestion games [Rosenthal,
1973], selfish routing [Roughgarden and Tardos, 2002] and
scheduling games. Existing methods for solving these frame-
works provide equilibrium strategies on allocating resources
to individual players. Stable matching [Gale and Shapley,
1962] is another framework that has received significant in-
terest in representing problems where there are two sides (stu-
dents and universities, employers and employees etc.) and en-
tities on one side have to be matched to the entities on the
other side. The objective is to provide a stable matching, so
that they players on neither side have an incentive to deviate
from their match.
3. Stochastic/Dynamic, Cooperative and Small Scale
Problems: Markov Decision Problems (MDPs) [Puterman,
1994] and its extensions to multiple agents, decentralised de-
cision making, i.e., MMDPs [Guestrin et al., 2001], Dec-
MDPs [Becker et al., 2004] respectively are leading frame-
works for this category of problems. The goal in this frame-
works is to compute policies that provide sequential decisions
to optimise expected value (over the uncertainty).
4. Stochastic/Dynamic, Competitive and Small Scale
Problems: Stochastic Games [Shapley, 1953] is the most rel-
evant framework for representing this category of problems
in view of representing stochasticity/dynamism and com-
petitive nature of players effectively. Resource constrained
MDPs [Dolgov and Durfee, 2006] is a specialized frame-
work of stochastic games, where reward interactions between
agents occur due to resources.

Urban decision problems of interest are in the fifth category
and are specified in the black oval of Figure 1, thus providing
a clear differentiation with existing work. Specifically, we are
interested in large scale (even societal scale) problems where
there is both stochasticity and dynamism, irrespective of the
nature of the entities (cooperative or competitive) involved.
To provide an intuitive estimate of the scale, we considered
urban decision problems where there are 10000 taxis serving
thousands of customers, 300 base stations carrying close to
6000 bicycles serving thousands of customers, a theme park
with around 20 attractions serving tens of thousands of cus-
tomers on any particular day, emergency response systems
that serve two large urban cities in Asia and so on. The practi-
cal relevance coupled with the significant computational com-
plexity involved in solving them make the urban decision
problems not only empirically significant but also technically
challenging and relevant.

2 Solution Methods
Our solution methods for these urban decision problems are
based on exploiting basic properties of the urban environ-
ments, namely:

(a) Homogeneity and Anonymity: Typically in urban
environments, there is homogeneity in supply (ex: 90% of
taxis in Singapore are identical and have same fare structure)
and demand components (ex: customers going from a source
to a destination are identical from the perspective of taxis)
and more over there is anonymity in interactions between
supply and demand (ex: assigning any one of the two taxis
at a taxi stand to a near by customer typically have identical



match value).
(b) Limited Influence of Individual Entities (Sup-
ply/Demand): While there are typically a large number of
entities involved in urban environments, the impact of each
of them on the overall outcome is typically very small.
(c) Abstraction: Urban decision problems where there is
supply demand matching are amenable to abstraction. That
is to say, we initially abstract a group of supply components
(depending on specific domain properties) into an abstract
supply component and create an abstract problem. The
sequential decision strategy to match supply and demand
can initially be computed for this abstracted problem and
then incrementally improved by reducing the abstraction in
the problem. We have successfully demonstrated this in the
context of bike sharing systems as explained later.
(d) Decomposability: In many of the urban decision prob-
lems, it is easy to identify multiple parts of the overall
problem that are nearly decomposable. For instance, in bike
sharing systems, the problem of moving bikes between sta-
tions so as to reduce lost demand and the problem of finding
routes for trucks that move bikes are nearly decomposable.

We now describe a few of our major contributions (that ex-
ploit the above properties) in the context of the categorisation
in Figure 1.

2.1 Large scale, Stochastic/Dynamic and
Cooperative

We have multiple key contributions in this space and we
describe our most recent ones. Our work on online spatio-
temporal matching [Lowalekar et al., 2016] provides strate-
gies for continuously matching available supply (ex: taxis)
to demand (ex: customers) while considering the impact of
the match on potential demand that will arrive in the next
time points of interest. The goal is to maximize expected
number of jobs/revenue or minimize wait time for customers.
We employ Stochastic Optimization with Sample Average
Approximation, where potential future demand scenarios are
generated from the data. Specifically, we exploit anonymity
in matches and decomposability across demand scenarios to
provide a scalable mechanism for online sequential match-
ing. We evaluate our approach on two large real world taxi
data sets in comparison to the standard greedy (myopic) ap-
proach typically employed in taxi applications (ex: Uber, Ola,
Lyft, Grab etc.).

Our second work of relevance is on dynamic repositioning
of bikes using trucks [Ghosh et al., 2015] to reduce lost de-
mand in bike sharing systems. Due to uncoordinated pickups
and drop-offs of bikes between stations, it is fairly common
to observe full or empty base stations. Such situations, specif-
ically empty base stations result in loss of demand, which can
result in usage of private vehicles by customers and which
in turn has a bearing on carbon emissions and traffic con-
gestion. Therefore, we compute sequential decision making
strategies to continuously reposition bikes in relevant base
stations so as to reduce lost demand. Specifically, we exploit
abstraction and near decomposability (between repositioning
of bikes and routing of trucks) to provide a scalable approach
that generates high quality solutions offline. We evaluate our

approach on two large real world bike sharing data sets.
Our third work [Varakantham et al., 2014] of relevance

to this category is associated with the general Decentralised
MDP (Dec-MDP) model, which is used to represent many
multi-agent sequential decision making problems under un-
certainty. Specifically, this research is motivated by the need
for coordinating traffic or security personnel (supply), to im-
prove coverage and reduce predictability in patrols so as
to reduce security incidents or traffic violations (demand).
Specifically, we provide a new model and optimization ap-
proaches that are better equipped to exploit homogeneity and
anonymity . Our approaches are able to generate solutions ef-
ficiently for multi-agent problems with hundreds of agents
and we demonstrate superior performance to existing ap-
proaches, specifically on large scale problems.

Finally, in our work on emergency response [Saisubrama-
nian et al., 2015], we compute dynamic movement strategies
for ambulances or fire trucks to move between base stations
so as to reduce response times for emergency events. We
exploit homogeneity in ambulances, anonymity in matches
and decomposability in emergency request graph to provide
a scalable approach. We evaluated our approach on two real
world emergency response data sets from asian cities and
demonstrated improvement over current practice and current
best approach.

2.2 Large scale, Stochastic/Dynamic and
Competitive

Even in this category, our first key contribution [Varakan-
tham et al., 2012] is in the context of taxi fleets. However,
in this work, the the goal is to provide decision support to
selfish taxi drivers (when they have no customer on board) on
moving between different zones so as to increase chances of
finding customers. This is in contrast to our work on online
matching [Lowalekar et al., 2016], where taxi driver has clear
incentive to follow the decision provided (as he/she profits
from using the application). We provide a new model that is a
combination of the Stochastic Games and Congestion Games
models to represent these problems of interest in a concise
way. The key challenge in this work is to provide decisions
where individual taxi drivers do not have an incentive to de-
viate from the provided strategy. By exploiting anonymity
in agent interactions and augmenting the well known Ficti-
tious play approach, we provide a scalable mechanism for
equilibrium strategy computation that was better in compar-
ison to greedy strategies typically employed by taxi drivers.
We demonstrated these results on a simulation validated on a
large taxi data set in Singapore.

Our second contribution [Ghosh et al., 2016] extends on
our earlier work in bike sharing [Ghosh et al., 2015] to con-
sider cities where there is a significant variance in demands at
base stations. Specifically, our goal is to compute robust repo-
sitioning strategies by assuming an adversarial environment
that aims to increase lost demand. We exploit abstraction and
fictitious play to provide a scalable approach. We evaluated
our algorithm on a new real world bike sharing data set where
there is significant variance in demands.



3 Results
Our approaches have been evaluated on simulations that are
validated using large real world data sets. Few of the key con-
crete results are as follows:

1. In taxi fleets where taxi drivers employ applications (ex:
Uber, Ola etc.) to obtain customers, we have demon-
strated the limitations of myopic reasoning adopted in
those applications. More importantly, we show that on-
line sequential decision making strategies that anticipate
future demand yield up to 90% of optimal solutions in
comparison to 60% with myopic approaches.

2. In taxi fleets where taxi drivers operate individually and
in their own selfish interest, we demonstrated an in-
crease of both average and minimum revenue for taxi
drivers, along with an increase in availability of taxis
to customers by following equilibrium strategies. Con-
cretely, we demonstrated a revenue increase of 40 SGD
per day in expectation for each taxi driver. These results
are based on a 2 year dataset of a major taxi company in
Singapore.

3. We were able to reduce the key performance indicator
for emergency response systems, namely the α-quantile
response time (α = 0.8) by at least 2 minutes on two
real world datasets from asian cities.

4. On bike sharing data sets, we demonstrated a reduction
of 22% and 45% in lost demand on two real world bike
sharing datasets over current practice (repositioning at
the end of the day). We also demonstrated a reduction
of 10% and 42% in lost demand over an online myopic
approach.

5. We improved scalability of decentralised power supply
restoration [Agrawal et al., 2015] by at least 30 fold by
exploiting near decomposability amongst regions.
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