
Solving Risk-Sensitive POMDPs With and Without Cost Observations

Ping Hou
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA
phou@cs.nmsu.edu

William Yeoh
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA
wyeoh@cs.nmsu.edu

Pradeep Varakantham
School of Information Systems

Singapore Management University
Singapore 188065

pradeepv@smu.edu.sg

Abstract

Partially Observable Markov Decision Processes (POMDPs)
are often used to model planning problems under uncertainty.
The goal in Risk-Sensitive POMDPs (RS-POMDPs) is to find
a policy that maximizes the probability that the cumulative
cost is within some user-defined cost threshold. In this paper,
unlike existing POMDP literature, we distinguish between
the two cases of whether costs can or cannot be observed and
show the empirical impact of cost observations. We also in-
troduce a new search-based algorithm to solve RS-POMDPs
and show that it is faster and more scalable than existing ap-
proaches in two synthetic domains and a taxi domain gener-
ated with real-world data.

Introduction
In planning their daily movement strategies to get cus-
tomers, most taxi drivers (Ziebart et al. 2008; Varakantham
et al. 2012) are focused on reducing the risk associated with
achieving a certain goal in terms of revenue. Similarly, elec-
tric car drivers (Eisner, Funke, and Storandt 2011) are more
focused on reducing the risk of being stranded on a highway
than trying to reach a destination several minutes earlier.
Trucks deployed to clear snow in cities (Salazar-Aguilar,
Langevin, and Laporte 2013) are motivated by the need to
reduce the risk of not clearing snow on “important” high-
ways and roads. Motivated by such problems, this paper fo-
cuses on risk-sensitive planning under uncertainty.

Markov Decision Processes (MDPs) and Partially Ob-
servable MDPs (POMDPs) have been shown to be ef-
fective models for planning under uncertainty. There is a
large body of work by researchers who incorporated no-
tions of risk in MDPs and POMDPs (Liu and Koenig 2005;
2006; Osogami 2011; 2012; Bäuerle and Rieder 2014;
Marecki and Varakantham 2010). Among them, Yu, Lin, and
Yan (1998) introduced Risk-Sensitive MDPs (RS-MDPs),
which seek a policy that maximizes the probability that the
cumulative cost is within some user-defined cost threshold.
In this model, the Risk-Sensitive criterion (RS-criterion) is
equivalent to having a utility function that is a step func-
tion, where an execution trajectory has no utility if its cost
exceeds the threshold and a non-zero constant utility other-
wise.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we investigate goal-directed Risk-Sensitive
POMDPs (RS-POMDPs), a generalization of RS-MDPs to
the partially observable case. In the motivating domains ear-
lier, partial observability may correspond to taxi drivers not
completely observing other taxis in the same zone, electric
car drivers not knowing about traffic conditions, and lack of
accurate knowledge of snow conditions on the ground. Ad-
ditionally, it is often not explicitly stated in the POMDP lit-
erature if agents can or cannot observe actual costs incurred
during execution (Kaelbling, Littman, and Cassandra 1998).
When costs can be observed, one can use them to update
and get more accurate belief states, which can result in im-
proved policies. Unfortunately, most algorithms do not ex-
plicitly use them to do so even when costs can be observed.

Towards solving goal-directed RS-POMDPs, we make
the following key contributions: (i) We generalize Func-
tional Value Iteration (FVI) (Marecki and Varakantham
2010), which was developed to solve finite-horizon RS-
POMDPs, to now solve goal-directed RS-POMDPs with our
RS-criterion; (ii) We propose a new exact search-based algo-
rithm that is tailored specifically to RS-POMDPs with our
RS-criterion; (iii) In domains where agents can observe ac-
tual costs of actions and they can provide more information
than the observations, we provide a mechanism to exploit the
extra information provided by observed costs; and (iv) Fi-
nally, we experimentally show that the new algorithm per-
forms better than FVI in two synthetic domains and a taxi
domain (Ziebart et al. 2008; Varakantham et al. 2012) gen-
erated with real-world data.

Background
A Goal-Directed POMDP (GD-POMDP) (Geffner
and Bonet 2013) is represented as a tuple P =
〈S, b0,G,A,T,C,Ω,O〉. It consists of a set of states
S; an initial belief state b0; a subset G ⊆ S of observ-
able goal states; a set of actions A; a transition function
T : S×A×S→ [0, 1] that gives the probability T (s, a, s′)
of transitioning from state s to state s′ when action a is exe-
cuted; a cost function C : S ×A → R+ that gives the cost
C(s, a) of executing action a in state s; a set of observations
Ω; and an observation function O : A × S × Ω → [0, 1]
that gives the probability O(a, s′, o) of receiving observation
o when the action a is executed and state s′ is reached. In
this paper, we will focus on GD-POMDPs and will thus use

the term POMDPs to refer to GD-POMDPs.
In POMDPs, a belief state b is a probability distribu-

tion over the states such that b(s) is the probability of s
being the actual state. We use B to denote the set of be-
lief states. Let ba(s) =

∑
s′ b(s

′)T (s′, a, s) denote the be-
lief state after performing action a in belief state b and
Pr(o | b, a) =

∑
s ba(s)O(a, s, o) denote the probability of

observing o after performing action a in belief state b. Then,
boa(s) = ba(s)O(a,s,o)

Pr(o|b,a) denotes the belief state after perform-
ing action a in belief state b and observing o.

A POMDP policy π : B → A is a mapping from belief
states to actions. A common objective is to find a policy π∗
with the minimum expected cost C∗(b0), defined by

C∗(b) = c(b, a∗) +
∑
o

Pr(o |b, a∗)C∗(boa∗) (1)

for all belief states b ∈ B, where a∗ = π∗(b) is the ac-
tion prescribed by policy π∗ in belief state b and c(b, a∗) =∑
s b(s)C(s, a∗) is the expected cost of applying action a∗

in belief state b.

Exact Algorithms: Exact POMDP algorithms (Kaelbling,
Littman, and Cassandra 1998) use a finite set Γ of |S|-
dimensional real vectors. Each vector corresponds to a par-
ticular policy and each element in a vector corresponds to the
expected cost α(s) of starting at a particular state s. Then,
the expected cost of a belief state b is:

C(b) = min
α∈Γ

∑
s

b(s)α(s) (2)

The number of vectors in Γ corresponds to the number of
undominated policies.1 The algorithms iteratively perform
full Dynamic Programming (DP) updates to update the vec-
tor set Γ, where, in each iteration k, each vector in the set
represents the expected cost of policies up to time step k.

Since DP updates are done backwards in time (i.e., start-
ing from the horizon), each policy in iteration k+1 will have
policies in iteration k as subpolicies. If we define a function
v : Ω→ Γk to map each observation to the |S|-dimensional
real vector of a possible subpolicy in iteration k, and Vk as
the set of all such functions, then the full set of possible vec-
tors after the update in iteration k + 1 is:

Γk+1 = {αa,v |a ∈ A, v ∈ Vk} (3)

where αa,v(s)=C(s, a)+
∑
s′,oT (s,a,s′)O(a,s′,o)v(o)(s′).

Some of these vectors may be dominated by other vectors
and can be pruned by using linear program.

Point-Based Algorithms: Since the number of vectors in
Γ grows exponentially in each iteration, researchers have
introduced point-based algorithms (Pineau, Gordon, and
Thrun 2003; Shani, Pineau, and Kaplow 2013) that update
the vectors by considering only a restricted subset of belief
points. In each iteration, these algorithms keep only a vector
with the smallest cost for each belief point, thereby restrict-
ing the number of vectors in Γ to the number of belief points.

1A policy is an undominated policy if it has the smallest cost
for at least one belief state.

Risk-Sensitive POMDP (RS-POMDP) Model
An RS-POMDP is defined by the tuple 〈P,Θ, θ0〉, where
P is a POMDP, Θ is a set of possible cost thresholds, and
θ0 ∈ Θ is the user-defined initial cost threshold. The objec-
tive is to find a policy π that maximizes the probability that
the expected cumulative cost cT (s,π) over all states s with a
non-zero initial belief b0(s) is no greater than the initial cost
threshold θ0:

argmax
π

∑
s

b0(s) · Pr(cT (s,π) ≤ θ0) (4)

The cumulative cost cT (s,π) of a trajectory T (s, π) = 〈s0 =
s, s1, s2, . . .〉, formed by executing policy π from state s, is
defined by cT (s,π) =

∑∞
t=0 ct, where ct is the cost incurred

when transitioning from st to st+1 in time step t.

Cost Observation: It is often not explicitly stated if agents
can or cannot observe the actual cost incurred during execu-
tion (Kaelbling, Littman, and Cassandra 1998). While one
can imagine incorporating the observed cost in the obser-
vation function, as the observed cost depends on the prede-
cessor state s, action a, and successor state s′, the new ob-
servation function O′(s, a, s′, o′) must include all these ele-
ments. Let O(a, s′, o) denote the observation function with-
out costs, where o is the regular POMDP observation with-
out costs. Also, let c denote the observed cost. Then, the new
observation o′ = (c, o) and the new observation function
O′(s, a, s′, o′) should satisfy the constraintO′(s, a, s′, o′) =
O(a, s′, o) if c = C(s, a) and O′(s, a, s′, o′) = 0 otherwise.
While it is possible to represent cost observations this way,
we provide a more compact representation in this paper that
separates the observed costs from the observation function.

In cases where actual costs can be observed, most
POMDP algorithms do not explicitly use them to update
the belief state. In some real-world applications, the actual
costs can indeed be observed. For example, in our electric
car example in the introduction, costs can correspond to the
amount of battery power used, and the driver can observe the
drop in its internal battery power. Therefore, in this paper,
we distinguish between the two cases and describe solution
approaches for both cases. Additionally, we assume that in
both cases, the agent can accurately detect if the actual cu-
mulative cost of its trajectory is greater than its initial cost
threshold (i.e., when its resource is depleted or its deadline
has passed) and it will then stop executing actions.

RS-POMDP Policy: The optimal policy for a POMDP of-
ten does not depend on the accumulated cost thus far. In con-
trast, an optimal policy for an RS-POMDP does depend on
the accumulated cost thus far. Therefore, RS-POMDP poli-
cies need to take accumulated costs into account.

One way to do so is to incorporate costs in the belief
states, which we define for the following two cases:
• If actual costs cannot be observed, then a belief state b is

now a probability distribution over pairs (s, θ) of states
s ∈ S and cost thresholds θ ∈ Θ, which is the initial cost
threshold θ0 minus the accumulated cost thus far. Then,
b(s, θ) is the probability of (s, θ) being the pair of actual
state and cost threshold. We use B¬c to denote this set of
belief states.

• If actual costs can be observed, then a belief state b is
also a probability distribution as defined for the previous
case, except that all pairs (s, θ) with non-zero probability
b(s, θ) > 0 have exactly the same cost threshold θ since
costs can be observed. We use Bc to denote this set of
belief states.
Finally, an RS-POMDP policy π is a mapping of belief

states to actions, where belief states are defined as above.
More specifically, it is π : B¬c → A if actual costs cannot
be observed and π : Bc → A if costs can be observed.

We use Pπ(b) to denote the reachable probability:

Pπ(b) =
∑
s,θ

b(s, θ) · Pr(cT (s,π) ≤ θ) (5)

In other words, it is the probability that the accumulated
cost of starting from belief state b is no larger than the cor-
responding cost threshold θ with policy π. Thus, in solving
an RS-POMDP, the goal is to find a policy π∗ such that:

π∗ = argmax
π

Pπ(b0) (6)

One can represent reachable probabilities as piecewise-
constant utility functions of cost thresholds θ. For example,
consider a simple POMDP with S = {s1, s2, s3, sg}; G =
{sg}; b0(si) = P i for each si /∈ G; and an action a that
can be executed from all states si /∈ G and transitions to the
goal state sg with probability 1 and cost θi. Assume that cost
θ3 > θ0 exceeds the initial cost threshold, and θ1 < θ2 <
θ0. Then, Figures 1(a) and 1(b) represent the utility functions
of the belief b0 at states s1 and s2, respectively. For example,
if the agent is at state s1 with probability b0(s1) = P 1, and
it has a current cost threshold θ ∈ [θ1, θ0], then it receives a
utility equal to the probability P 1 of reaching a goal since its
action a can reach a goal with complete certainty. The utility
function of the initial belief state is thus the sum of the two
utility functions and is shown in Figure 1(c).

Functional Value Iteration (FVI)
FVI is an exact algorithm that can solve finite-horizon
RS-POMDPs without cost observations and with arbitrary
piecewise-linear non-decreasing utility functions (Marecki
and Varakantham 2010). In this section, we describe how to
generalize FVI to solve goal-directed RS-POMDPs with or
without cost observations. Additionally, we describe how to
optimize FVI for our piecewise-constant utility functions.

Recall that, in POMDPs, Γ is a set of |S|-dimensional vec-
tors, where each element of these vectors is the expected
cost of starting at a particular state. In RS-POMDPs, Γ
is also a set of |S|-dimensional vectors, but each element
of these vectors is now a piecewise-constant function that
describes the reachable probability as a function of cost
thresholds. In other words, each vector in Γ is a mapping
S → (Θ → [0, 1]), that is, a particular state s ∈ S maps
to a piecewise-constant utility function, and a particular cost
threshold θ ∈ Θ maps to a reachable probability in that util-
ity function. Then, the reachable probability of a belief state
b is:

P (b) = max
α∈Γ

∑
s,θ

b(s, θ)α(s)(θ) (7)

Similar to exact POMDP algorithms, FVI iteratively up-
dates the vector set Γ until convergence. Then, the full set of
possible vectors after the update in iteration k + 1 is still:

Γk+1 = {αa,v |a ∈ A, v ∈ Vk} (8)

where Vk is the set of functions v, and the definition of v
differs in the following two cases:
• If actual costs cannot be observed, then v : Ω → Γk is

similar to the one defined for POMDPs.
• If actual costs can be observed, then v : C×Ω→ Γk.
Finally, the update of the vectors αa,v are different than
those in POMDP algorithms as they now contain functions
instead of real numbers:
• If actual costs cannot be observed, then

αa,v(s)(θ)=
∑
s′,θ′,o

T (s, a, s′)O(a, s′, o)v(o)(s′)(θ′) (9)

for all θ ∈ Θ, where θ′ = θ − C(s, a).
• If actual costs can be observed, then

αa,v(s)(θ) = (10)
0 if c 6= C(s, a)∑
s′,θ′,o

T (s, a, s′)O(a, s′, o)v(c, o)(s′)(θ′) otherwise

for all θ ∈ Θ, where θ′ = θ − C(s, a) and c is the
observed cost.
We now describe how to prune dominated vectors from

Γ to scale up FVI. Note that vector αi is not dominated by
other vectors if the following holds for all vectors αj ∈ Γ:

∃b :
∑
s,θ

b(s, θ) [αi(s)(θ)− αj(s)(θ)] ≥ 0 (11)

In order to compute αi(s)(θ) − αj(s)(θ) efficiently for
our piecewise-constant utility functions, we observe the fol-
lowing:

Observation 1 Each piecewise-constant utility function
can be represented by an ordered list of pairs {(θ1, P 1),
(θ2, P 2), . . . , (θn, Pn)} that describe the ‘pieces’ of the
function.

Observation 2 For each piecewise-constant utility func-
tion, the reachable probability for all cost thresholds θ ∈
[θi, θi+1) are identical.

Therefore, instead of considering all cost thresholds θ in
Equation 11, one can divide the utility functions into seg-
ments of cost thresholds [θ1, θ2), [θ2, θ3), . . . , [θn−1, θn),
where, for each utility function αi(s), the reachable proba-
bilities αi(s)(θ) = αi(s)(θ

′) are identical for all cost thresh-
olds θ, θ′ ∈ [θj , θj+1) within a segment. One can identify
these segments by taking the union of all cost thresholds in
the ordered list of pairs over all utility functions αi(s) in all
vectors αi ∈ Γ.

We now describe the optimizations and the pruning con-
dition to replace Equation 11 for the following two cases:
• In the case where actual costs cannot be observed, since

the computation of the difference αi(s)(θ) − αj(s)(θ) is
for the same state s, one can optimize the process above

1

P1

P

0 θ
1 θ0 Θ

(a) Belief b0(s1)

1
P

0 θ
2 θ0 Θ

P2

(b) Belief b0(s2)

1

P1

P

0 θ
1 θ

2 θ0 Θ

P1 + P2

(c) Belief State b0

Figure 1: Example Piecewise-Constant Utility Functions

by computing segments for each state s in order to mini-
mize the number of segments. Then, one can use the fol-
lowing condition to check for dominance:

∃b :
∑
s,k

∑
θ∈[θks ,θ

k+1
s)

b(s, θ)
[
αi(s)(θ

k
s)− αj(s)(θks)

]
≥ 0 (12)

where θks is the start of the k-th cost threshold segment for
state s. This dominance check can be implemented with a
single linear program.

• In the case where actual costs can be observed, recall that
for a particular belief state b, all pairs (s, θ) with non-zero
probability b(s, θ) > 0 have exactly the same cost thresh-
old θ. Therefore, one needs to only check the following
condition for that particular cost threshold θ:

∃b :
∑
s

b(s, θ)
[
αi(s)(θ

k)− αj(s)(θk)
]
≥ 0 (13)

where θ ∈ [θk, θk+1) and θk is the start of the k-th cost
threshold segment in the union of all cost threshold seg-
ments over all states. This dominance check can be im-
plemented with n (= number of cost threshold segments)
linear programs, where θ = θk in the k-th linear program.

Point-Based FVI (PB-FVI): Similar to point-based
POMDP algorithms, one can extend FVI to PB-FVI: In each
iteration of the DP update, PB-FVI updates the vectors in
Γ by considering only a restricted subset of belief points.
While one can select the set of belief points arbitrarily, we
select them in the same way as PBVI (Pineau, Gordon, and
Thrun 2003) in our experiments.

Depth-First Search (DFS)
We now describe how to use DFS to search the reachable
belief state space for an optimal policy.

Belief State Updates: In RS-POMDPs, the belief state up-
dates are slightly different than in POMDPs because belief
states now include cost thresholds:
• If actual costs cannot be observed, then, let

ba(s′, θ′) =
∑
s,θ

b(s, θ)T (s, a, s′) (14)

denote the belief state after performing action a in belief
state b, where θ′ = θ − C(s′, a), and

boa(s′, θ′) =
1

Z
ba(s′, θ′)O(a, s′, o) (15)

denote the belief state after performing action a in belief
state b and observing o; Z is the normalizing factor.

• If actual costs can be observed, then, let

ba,c(s
′, θ′) =

∑
s,θ

ba,c(s, θ, s
′) (16)

ba,c(s, θ, s
′) =

{
b(s, θ)T (s, a, s′) if c = C(s, a)
0 otherwise

denote the unnormalized belief state after performing
action a in belief state b and observing cost c, where
θ′ = θ − c, and

boa,c(s
′, θ′) =

1

Z
ba,c(s

′, θ′)O(a, s′, o) (17)

denote the belief state after performing action a in belief
state b and observing c and o; Z is the normalizing factor.

Reachable Probability Backups: Instead of using vec-
tors in Γ to compute reachable probabilities, one can also
compute them using the system of linear equations below:
• If actual costs cannot be observed, then

P (b) = max
a

∑
s′, θ′

P (a, s′, θ′) (18)

P (a, s′, θ′) =
0 if θ′<0
ba(s′, θ′) if s′∈G, θ′ ≥ 0∑
o

ba(s′, θ′)O(a, s′, o)P (boa) if s′ /∈G, θ′ ≥ 0

where P (a, s′, θ′) is the reachable probability of an agent
taking action a and transitioning to successor state s′ with
cost threshold θ′. For each action-successor-threshold tu-
ple (a, s′, θ′), there are the following three cases:
• If the resulting cost threshold θ′ is negative, then the

successor cannot be reached. Thus, the reachable prob-
ability is 0.
• If the successor s′ is a goal state and the resulting cost

threshold θ′ is non-negative, then the goal state can be
reached. Thus, the reachable probability is the belief
probability ba(s′, θ′). Note that there is no need for the
observation function here since agents can accurately
identify if they have reached goal states.
• If the successor is not a goal state and the resulting

cost threshold is non-negative, then the successor can
be reached. Thus, the reachable probability can be re-
cursively computed as the belief probability ba(s′, θ′)
multiplied by the product of the observation probability
O(a, s′, o) and the reachable probability of the resulting
belief state P (boa) summed over all observations o.

• If actual costs can be observed, then

P (b) = max
a

∑
c,s′, θ′

P (a, c, s′, θ′) (19)

P (a, c, s′, θ′) =
0 if θ′<0
ba,c(s

′, θ′) if s′∈G, θ′ ≥ 0∑
o

ba,c(s
′, θ′)O(a, s′, o)P (boa,c) if s′ /∈G, θ′ ≥ 0

Algorithm 1: DFS(b)
1 Pa∗ ← 0
2 for actions a ∈ A do
3 Pa ← 0

4 PGa ← 0
5 ba ← BELIEF UPDATE(b, a)
6 for states s′ ∈ S and thresholds θ′ ∈ Θ do
7 if s′ ∈ G and θ′ ≥ 0 then
8 PGa ← PGa + ba(s′, θ′)

9 Pa ← Pa + PGa
10 for observations o ∈ Ω do
11 P¬Ga,o ← 0

12 for states s′ ∈ S and thresholds θ′ ∈ Θ do
13 if s′ /∈ G and θ′ ≥ 0 then
14 P¬Ga,o ← P¬Ga,o + ba(s′, θ′) ·O(a, s′, o)

15 if P¬Ga,o > 0 then
16 boa ← BELIEF UPDATE(b, a, o)

17 Pa ← Pa + P¬Ga,o · DFS(boa)

18 if Pa > Pa∗ then
19 Pa∗ ← Pa
20 record action a in the policy tree

21 return Pa∗

where P (a, c, s′, θ′) is the reachable probability of an
agent taking action a, observing cost c, and transition-
ing to successor state s′ with cost threshold θ′. For each
action-cost-successor-threshold tuple (a, c, s′, θ′), there
are three cases similar to the three cases in the situation
where actual costs cannot be observed.
One can extract the optimal policy by taking the ac-

tion that is returned by the maximization operator in Equa-
tions 18 and 19 for each belief state b.

Algorithm Description: Algorithm 1 shows the pseu-
docode of the DFS algorithm for the case where actual costs
cannot be observed. It uses the following variables:
• Pa∗ stores the reachable probability for the best action a∗.
• Pa stores the reachable probability for action a.
• PGa stores the reachable probability of reaching a goal

state with action a.
• P¬Ga,o stores the reachable probability of reaching a non-

goal state with action a and observation o.
The algorithm is implemented recursively correspond-

ing to Equation 18, where it computes the reachable prob-
ability for all possible actions a and stores the action
with the largest probability (lines 18-20). The function BE-
LIEF UPDATE is overloaded, where the function in lines 5
and 16 implements Equations 14 and 15, respectively.

For the case where actual costs can be observed, the al-
gorithm needs to also loop over all possible costs c. This
loop starts between lines 3 and 4 and ends between lines 17
and 18. Additionally, the BELIEF UPDATE function includes
c in its argument, and the function in lines 5 and 16 imple-
ments Equations 16 and 17, respectively. Therefore, ba and

boa are actually ba,c and boa,c, respectively, and the variables
PGa and P¬Ga,o should be called PGa,c and P¬Ga,c,o, respectively,
which are reachable probabilities for a particular cost c.

Theoretical Results
Theorem 1 Solving RS-POMDPs optimally is PSPACE-
hard in the original state space.

PROOF SKETCH: Similar to the proof by Papadimitriou and
Tsitsiklis (1987), one can reduce a Quantified SAT (QSAT)
to an RS-POMDP.

Theorem 2 Solving RS-POMDPs with negative costs is un-
decidable.

PROOF SKETCH: Chatterjee et al. (2015) showed that check-
ing for the existence of a policy that guarantees reaching a
goal with an arbitrarily small expected cumulative cost is
undecidable. Our RS-POMDP objective subsumes their ob-
jective and, thus, it is undecidable as well.

Theorem 3 There is at least one optimal RS-POMDP pol-
icy that is both stationary and deterministic.

PROOF SKETCH: One can create POMDPs with augmented
states (s, θ) that are equivalent to RS-POMDPs. There is at
least one optimal policy that is both stationary and determin-
istic for these POMDPs (Kaelbling, Littman, and Cassandra
1998) and, thus, it applies to RS-POMDPs as well.

Related Work
We now describe the related work in two different areas. The
first area relates to the representation of risk through a utility
function. Yu, Lin, and Yan (1998) introduced risk-sensitive
MDPs (RS-MDPs), which optimizes our risk-sensitive crite-
rion in MDPs, and a VI-based approach to solve RS-MDPs
in their seminal work. Hou, Yeoh, and Varakantham (2014)
followed up with improved search and dynamic program-
ming based RS-MDP algorithms. Liu and Koenig (2006)
generalized the piecewise-constant utility function to arbi-
trary piecewise-linear utility functions and introduced FVI
to solve MDPs with these utility functions. Marecki and
Varakantham (2010) extended FVI to solve POMDPs with
these utility functions. Our work is the first that intro-
duce RS-POMDP solvers that are optimized for piecewise-
constant utility functions.

The second related area includes the body of work on
the inclusion of reachability in the optimization criteria of
MDPs and POMDPs. In this area, researchers have intro-
duced the MAXPROB MDP, which is a goal-directed MDP
with the objective of maximizing the probability of get-
ting to a goal independent of cost (Kolobov et al. 2011;
Kolobov, Mausam, and Weld 2012). Finally, Chatterjee et
al. (2015) introduced a different optimization criterion for
POMDPs, where they are interested in finding a policy that
minimizes the expected cost but guarantees that the reach-
able probability of the initial belief state with this policy is
1. These criteria are different compared to the one we opti-
mize for in RS-POMDPs.

(a) Randomly Generated POMDPs: Actual costs cannot be observed

DFS FVI w/o Pruning FVI w/ Pruning PB-FVI(10) PB-FVI(100) PB-FVI(1000)
% time P % time P % time P % time P % time P % time P

θ0 =1.25·C∗det 100 225 0.160 10 540005 0.142 16 504695 0.126 100 2 0.136 100 26 0.160 100 1139 0.160
θ0 =1.50·C∗det 100 3919 0.205 6 564001 0.169 10 540020 0.134 100 6 0.185 100 105 0.204 100 2768 0.205
θ0 =1.75·C∗det 98 35241 0.227 4 576001 0.173 10 540490 0.135 100 26 0.208 100 560 0.228 100 18255 0.228
θ0 =2.00·C∗det 86 132378 0.214 2 588000 0.178 4 576014 0.136 100 45 0.226 100 4088 0.247 80 171146 0.248

|S| = 50 100 2627 0.208 12 528028 0.184 16 504394 0.154 100 1 0.184 100 50 0.208 100 1407 0.208
|S| = 100 100 3919 0.205 6 564001 0.169 10 540020 0.134 100 6 0.185 100 105 0.204 100 2768 0.205
|S| = 200 96 30390 0.113 6 564002 0.079 6 564004 0.051 100 9 0.089 100 295 0.115 100 10362 0.117
|S| = 400 92 90179 0.081 2 588392 0.043 2 588024 0.021 100 31 0.055 100 2699 0.085 94 52983 0.085

(b) Randomly Generated POMDPs: Actual costs can be observed

θ0 =1.25·C∗det 100 448 0.163 6 565055 0.049 8 552567 0.061 100 24 0.124 100 264 0.161 100 2751 0.163
θ0 =1.50·C∗det 100 8735 0.214 4 576023 0.037 4 576051 0.059 100 59 0.168 100 814 0.210 100 11540 0.213
θ0 =1.75·C∗det 92 73447 0.231 2 588000 0.037 4 576638 0.059 100 100 0.184 100 2558 0.241 100 43451 0.248
θ0 =2.00·C∗det 80 182883 0.226 2 588001 0.037 2 588036 0.059 100 206 0.201 100 7049 0.268 92 155484 0.279

|S| = 50 100 7116 0.212 4 576000 0.074 12 533890 0.096 100 8 0.165 100 145 0.208 100 2014 0.212
|S| = 100 100 8735 0.214 4 576023 0.037 4 576051 0.059 100 59 0.168 100 814 0.210 100 11540 0.213
|S| = 200 96 41439 0.121 2 588007 0.008 4 582148 0.022 100 153 0.071 100 2076 0.111 100 43319 0.126
|S| = 400 84 141332 0.081 0 600000 0.000 0 600000 0.000 100 562 0.047 100 8528 0.073 86 231325 0.092

(c) Navigation and Taxi Domains: Actual costs cannot be observed

Navigation 80 132629 0.057 10 540000 0.018 30 421011 0.057 100 0 0.000 100 7 0.006 100 935 0.045
Taxi 50 377887 0.317 0 600000 0.000 0 600000 0.000 100 239 0.000 100 322 0.000 50 331017 0.189

(d) Navigation and Taxi Domains: Actual costs can be observed

Navigation 90 111525 0.058 10 540001 0.004 20 535112 0.053 100 3 0.000 100 229 0.003 100 698 0.014
Taxi 50 349765 0.317 0 600000 0.000 0 600000 0.000 100 27 0.000 100 265 0.000 100 84257 0.041

Table 1: Experimental Results

Experimental Results
We evaluate DFS, FVI (with and without pruning) and its
point-based version on three domains: (i) Randomly gen-
erated POMDPs; (ii) the Navigation domain from ICAPS
IPPC 2011; and (iii) a taxi domain (Ziebart et al. 2008;
Varakantham et al. 2012) generated with real-world data.
We conducted our experiments on a 3.40 GHz machine with
16GB of RAM.

Randomly Generated POMDPs: We randomly gener-
ated POMDPs from 50 to 400 states, 2 actions per state,
2 successors per action, and 2 observations per action-
successor pair. Each problem has exactly 1 starting state and
1 goal state. We randomly chose the costs from the range
[1, 10] and varied the initial cost thresholds θ0 as a function
of the accumulated cost C∗det of the shortest deterministic
path from any starting state in the initial belief state b0.

Tables 1(a) and 1(b) show our results for the two cases
where actual costs can and cannot be observed. There are
two subtables for each case, where we set |S| = 100 and
vary θ0 in the first subtables and set θ0 = 1.50 · C∗det and
vary |S| in the second subtables. We report scalability in
terms of the percentage of instances (out of 50 instances)
solved; average runtime in milliseconds; and average reach-
able probability for each of the algorithms. If an algorithm
fails to solve an instance within a time limit of 10 minutes,
we take the time limit as its runtime and the reachable proba-

bility of the current solution as its reachable probability. We
make the following observations:
• With increasing initial cost threshold or number of states,

in general, scalability decreases and runtime increases for
all algorithms. The reason is that with a larger cost thresh-
old or a larger number of states, each algorithm has to
search over a larger search space.

• When optimal solutions are found, they are better (with
larger reachable probabilities) when costs can be ob-
served. This observation can be found in the cases where
DFS solves all the instances optimally. The reason for this
observation is that the optimal algorithms can exploit the
observed cost to more accurately update the belief states.
However, this comes at the cost of larger runtimes because
they need to consider more candidate policies. For exam-
ple, in FVI, |Vk| in Equation 8 grows with the number of
possible costs |C|.

• DFS is faster and more scalable than FVI because DFS
ignores non-reachable belief states while FVI does not.

• PB-FVI finds better solutions with increasing number of
belief points but at the cost of increasing runtime and
decreasing scalability. With 1000 belief points, PB-FVI
finds close to optimal solutions for the verifiable cases
where DFS also solves all instances. In some cases where
DFS fails to solve all instances (e.g., |S|=200), DFS finds
worse solutions than PB-FVI(1000) even though DFS is
an optimal algorithm and PB-FVI is not. When DFS fails

to solve an instance, its reachable probability is 0 as it
does not store any full suboptimal policies. In contrast,
FVI and PB-FVI may have positive reachable probabili-
ties since they iteratively improve their policies.

• Finally, pruning improves the scalability of FVI.

Navigation and Taxi Domains: For the navigation do-
main, we use all 10 IPPC instances, but we changed the
costs to randomly vary from [1, 10] to show the impact of
cost observations. For the taxi domain, states are composed
of the tuple 〈zone z, time interval t, hired rate level pz,t〉,
where there are 10 zones, each time interval is 30 minutes
long, and the hired rate level is either high (= 0.75) or low
(= 0.25). Each taxi has two types of actions: (a1) move to
a zone and (a2) look for passengers in its zone. Taxis exe-
cuting a1 will move to their desired zone with probability
1 and 0 reward. Taxis executing a2 have probability pz,t of
successfully picking up a passenger and they can accurately
observe pz,t with probability 0.8. If it fails to pick up a pas-
senger, it ends up in the same zone with 0 reward. The prob-
ability pz,t; the transition function, which determines which
zone a hired taxi moves to; and the reward function, which
determines the reward of the hired taxi, is generated with
real-world data. We average our results over 10 instances. In
both domains, we set θ0 =1.50·C∗det.

Tables 1(c) and 1(d) show our results. In general, all the
observations from the randomly generated POMDPs apply
here as well except for the following: PB-FVI solves all
instances but does not find good quality solutions. In fact,
it finds infeasible solutions when the number of points is
small. This observation highlights the fact that PB-FVI’s be-
havior is highly dependent on domain structure.

Conclusions
We investigated RS-POMDPs, where we distinguishe be-
tween the two cases of whether costs can or cannot be ob-
served. We also introduced a new RS-POMDP algorithm
based on DFS and generalize FVI to solve RS-POMDPs
with and without cost observations. Our experimental results
show that DFS scales better than FVI on two synthetic do-
mains and a taxi domain generated with real-world data.

Acknowledgments
This research is partially supported by NSF grant 1345232.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. govern-
ment.

References
Bäuerle, N., and Rieder, U. 2014. More risk-sensitive
Markov decision processes. Mathematics of Operations Re-
search 39(1):105–120.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A.
2015. Optimal cost almost-sure reachability in POMDPs.
In Proc. of AAAI, 3496–3502.

Eisner, J.; Funke, S.; and Storandt, S. 2011. Optimal route
planning for electric vehicles in large networks. In Proc. of
AAAI, 1108–1113.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Hou, P.; Yeoh, W.; and Varakantham, P. 2014. Revisiting
risk-sensitive MDPs: New algorithms and results. In Proc.
of ICAPS, 136–144.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1–2):99–134.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Proc. of ICAPS, 130–137.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of
goal-oriented MDPs with dead ends. In Proc. of UAI, 438–
447.
Liu, Y., and Koenig, S. 2005. Risk-sensitive planning with
one-switch utility functions: Value iteration. In Proc. of
AAAI, 993–999.
Liu, Y., and Koenig, S. 2006. Functional value iteration for
decision-theoretic planning with general utility functions. In
Proc. of AAAI, 1186–1193.
Marecki, J., and Varakantham, P. 2010. Risk-sensitive plan-
ning in partially observable environments. In Proc. of AA-
MAS, 1357–1368.
Osogami, T. 2011. Iterated risk measures for risk-sensitive
Markov decision processes with discounted cost. In Proc. of
UAI, 573–580.
Osogami, T. 2012. Robustness and risk-sensitivity in
Markov decision processes. In Proc. of NIPS, 233–241.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.
Pineau, J.; Gordon, G. J.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In Proc.
of IJCAI, 1025–1032.
Salazar-Aguilar, A.; Langevin, A.; and Laporte, G. 2013.
The synchronized arc and node routing problem: Applica-
tion to road marking. Computers & Operations Research
40(7):1708–1715.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems 27(1):1–51.
Varakantham, P.; Cheng, S.; Gordon, G. J.; and Ahmed, A.
2012. Decision support for agent populations in uncertain
and congested environments. In Proc. of AAAI.
Yu, S.; Lin, Y.; and Yan, P. 1998. Optimization models
for the first arrival target distribution function in discrete
time. Journal of Mathematical Analysis and Applications
225:193–223.
Ziebart, B.; Maas, A.; Dey, A.; and Bagnell, J. A. 2008. Nav-
igate like a cabbie: Probabilistic reasoning from observed
context-aware behavior. In Proc. of Ubicomp, 322–331.

