
An Extended Study on Addressing Defender

Teamwork while Accounting for Uncertainty in

Attacker Defender Games using Iterative

Dec-MDPs

Eric Shieh
Computer Science, University of Southern California

Los Angeles, CA, USA

eshieh@usc.edu

Albert Xin Jiang
Computer Science, Trinity University

San Antonio, TX, USA

xjiang@trinity.edu

Amulya Yadav
Computer Science, University of Southern California

Los Angeles, CA, USA

amulyaya@usc.edu

Pradeep Varakantham
Information Systems, Singapore Management University

Singapore

pradeepv@smu.edu.sg

Milind Tambe
Computer Science, University of Southern California

Los Angeles, CA, USA

tambe@usc.edu

November 30, 2015

Abstract

Multi-agent teamwork and defender-attacker security games are two
areas that are currently receiving significant attention within multi-agent
systems research. Unfortunately, despite the need for effective teamwork
among multiple defenders, little has been done to harness the teamwork

1

research in security games. The problem that this paper seeks to solve is
the coordination of decentralized defender agents in the presence of uncer-
tainty while securing targets against an observing adversary. To address
this problem, we offer the following novel contributions in this paper: (i)
New model of security games with defender teams that coordinate under
uncertainty; (ii) New algorithm based on column generation that uti-
lizes Decentralized Markov Decision Processes (Dec-MDPs) to generate
defender strategies that incorporate uncertainty; (iii) New techniques to
handle global events (when one or more agents may leave the system)
during defender execution; (iv) Heuristics that help scale up in the num-
ber of targets and agents to handle real-world scenarios; (v) Exploration
of the robustness of randomized pure strategies. The paper opens the
door to a potentially new area combining computational game theory and
multi-agent teamwork.1

Keywords — Game theory; Dec-MDP; Security; Stackelberg Games; Se-
curity Games

1 Introduction

Security games have recently emerged as an important research area in multi-
agent systems, leading to successful deployments that aid security scheduling at
ports, airports and other infrastructure sites, while also aiding in anti-poaching
efforts and protection of fisheries [24, 45, 46, 49, 63, 65]. In this paper, when we
refer to security games, we do not address the domain of computer security such
as cybersecurity. The definition of a security game is a game where there are two
players, a defender and an attacker. The players can be individuals or groups
that cooperate to execute a strategy, where the leader (defender player) moves
first while the follower (attacker player) observes the leader’s strategy before
moving (known as a Stackelberg game)[31]. The challenge addressed in security
games is the optimization of the allocation of a defender’s limited security agents
(for example by determining randomized patrol routes or checkpoints). Such
allocation is optimized taking into account the presence of an adversary who
can conduct surveillance before planning an attack[12, 31, 42].

1An initial version of this work appeared in [51]. We extend this initial work with the
following contributions with two new algorithms and extensive new analyses that improve our
understanding of issues such as the relationship in security games of payoff covariance, graph
structure, and execution uncertainty. More specifically: (i) In Section 4.2 we present a new
heuristic to improve scale up to significantly larger defender teams than was possible in [51];
(ii) In Section 4.3 we propose and analyze a new approach that finds a locally optimal joint
strategy; (iii) In Section 5.4 we provide additional analysis of the importance of addressing
execution uncertainty; (iv) In Section 5.7.3 we further explore the relationship of deterministic
versus randomized pure strategies under varying payoff structures - specifically we explore
the relationship in the correlation between defender/attacker payoffs and performance of pure
versus randomized defender strategies; (v) In Section 5.7.1 we evaluate the performance of the
deterministic-based patrol strategy algorithm under varying graph structures and probabilities
of delay to show the effect that graphs on the defender’s expected utility. In addition to these
contributions, three further new sections were added: Section 5.1 to discuss the metro rail
domain, Section 6 for related work, and Section 7 which includes future work.

2

Unfortunately, previous work in security games has mostly ignored the chal-
lenge of defender teamwork; while the deployment of multiple defenders is op-
timized, most previous research has not focused on coordination among these
agents (one exception is our previous work [50] which we build on and discuss
in the Related Work section, Section 6.1). Additionally, no prior work has ex-
plored the effect of uncertainty in the coordination of multiple defender agents
in security games.

This paper focuses on this challenge of computing an optimal agent alloca-
tion strategy for a defender team while also considering uncertainty in coordi-
nation of multiple defender agents. To that end, this paper combines two areas
of research in multi-agent systems: security games and multi-agent teamwork
under uncertainty. In many security environments, teamwork among multiple
defender agents of possibly different types (e.g., joint coordinated patrols of
aerial, motorized vehicles and canines) is important to the overall effectiveness
of the defender. However, teamwork is complicated by the following three fac-
tors that we choose to address in this paper. First, multiple defenders may be
required to coordinate their activities under uncertainty, e.g., delays that may
arise from unexpected situations may lead different agents to miscoordinate,
making them unable to act simultaneously. Second, some agents may leave the
system unexpectedly requiring others to fill in the gaps that are created. Third,
defenders may need to act without the ability to communicate, e.g., in security
situations, communication may sometimes be intentionally switched off. We
provide detailed motivating scenarios in Section 2 outlining these challenges.

To handle teamwork of defender agents in security games, our work makes
the following contributions. First, this paper provides a new model of a secu-
rity game where the defender team’s strategy incorporates coordination under
uncertainty. Second, we present a new algorithm that uses column generation
and decentralized Markov Decision Problems (Dec-MDPs) to efficiently gener-
ate defender strategies in solving this new model of a security game. Third,
global events among defender agents (e.g., a defender agent stops patrolling due
to a bomb threat) are modeled in handling teamwork. Fourth, we contribute
heuristics within our algorithm that help scale-up to real-world scenarios. Fifth,
while exploring randomized pure strategies previously seen to converge faster,
we discovered that they were not as fast but instead were more robust than
deterministic pure strategies.

While the work presented in this paper applies to many of the application
domains of security games, including the security of flights, ports and rail [56],
we focus on the metro rail domain for a concrete example, given the increasing
amount of rail related terrorism threats [47]. The challenges from interruptions,
teamwork, or limited communication is not specific to only the metro rail domain
and can be applied to other domains as well.

This paper is organized as follows: Section 2 starts with presenting the
game theoretic model to address uncertainty among defender agents in a secu-
rity game. Section 3 describes the algorithm to solve and compute the defender
strategy. Section 4 presents heuristics to improve the runtime. Section 5 pro-
vides experimental results for all of our algorithms and heuristics. Section 6

3

explores the related work on security games and Dec-MDPs. Section 7 summa-
rizes the contributions of the paper and future work.

2 Game Model of Patrolling Defender and At-
tacker Agent

This paper presents a game theoretic model of effective teamwork among multi-
ple decentralized defender agents with execution uncertainty against an attacker
agent. We are generalizing the security game model (background information
on this model is in Section 5.2) to multiple defender agents coordinating un-
der uncertainty. This section starts with preliminary background on Dec-MDPs
(Section 2.1). The following section then gives an overview of the defender
team and attacker model (Section 2.2). Next, the paper goes into detail of the
defender’s effectiveness at each target-time pair (Section 2.3). Then, the de-
fender’s pure strategy along with the attacker and defender’s expected utility
is discussed (Section 2.4). Finally, global events are explained and addressed in
the model (Section 2.5).

2.1 Preliminary Knowledge on Dec-MDP

In this paper, we enhance security games by allowing complex defender strate-
gies where multiple defenders coordinate under uncertainty. Attempting to find
the optimal defender mixed strategy in such a setting is computationally ex-
tremely expensive, as discussed later. To speed up computation, we exploit ad-
vances in previous work in Decentralized Markov Decision Process (Dec-MDP)
algorithms [14, 23, 54, 59], in one key component of our algorithm, and hence
this section provides relevant background on Dec-MDPs.

Markov Decisions Processes (MDPs) are a useful framework to address prob-
lems that involve sequential decision making under uncertainty. In situations
where there is only partial information of the system’s state, a more general
framework of Partially Observable Markov Decision Processes (POMDPs) are
used. When there is a team of agents, where each one is able to make its own
local observations, the framework is known as a Decentralized Markov Deci-
sion Process (Dec-MDP) when there is joint full observability (at a given time
step, the total observation of all agents uniquely determine the state) [6, 7,
14, 15, 54], and a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) when the agents together may not fully observe the state of the
system and thus have uncertainty in their state [1, 2, 7, 40, 41, 62]. As we will
explain later, when solving the security game model introduced in this paper, we
use Dec-MDPs in one key component of our algorithm to attempt to optimize
defender mixed strategies. Informally, in this component, we are faced with a
problem involving multiple agents in a team, with uncertainty in their actions,
and only local knowledge of states.

More specifically, we employ the transition independent Dec-MDP model [6]
that is defined by the tuple: 〈Ag, S,A, T,R〉. Ag = {1, . . . , n} represents the set

4

of n agents [7]. S = Su×S1× · · · ×Sn is a finite set of world states of the form
s = 〈su, s1, · · · , sn〉. Each agent i’s local state si is a tuple (ti, τi) where ti is the
target and τi is the time at which agent i reaches target ti. Time is discretized
(as explained in Section 5.1) and there are m decision epochs {1, . . . ,m}. su is
the unaffected state, meaning that it is not affected by the agents’ actions. It
is employed to represent occurrences of global events (bomb threats, increased
risk at a location, etc.) that are not dependent on the state or actions of the
agents. This notion of unaffected states is equivalent to the one employed in
Network Distributed POMDPs [37].

A = A1×· · ·×An is a finite set of joint actions a = 〈a1, · · · , an〉, where Ai is
the set of actions to be performed by agent i. T : S×A×S → R is the transition
function where T (s, a, s′) represents the probability of the next joint state being
s′ if the current joint state is s and the joint action is a. Since transitions between
agent i’s local states are independent of actions of other agents, we have tran-
sition independence [6]. Formally, T (s, a, s′) = Tu(su, s

′
u) ·
∏

i Ti(〈su, si〉, ai, s′i),
where Ti(〈su, si〉, ai, s′i) is the transition function for agent i and Tu(su, s

′
u) is the

unaffectable transition function. The joint reward function for the Dec-MDP
takes the form of R : S → R, where R(s) represents the reward for reaching
joint state s.

Unfortunately, we cannot directly apply the Dec-MDP model to solve the se-
curity game that incorporates defender teamwork under uncertainty. One issue
is that in the security game, the defender and attacker have different payoffs,
which is not possible to be modeled in Dec-MDPs. Another issue is that we
are modeling game-theoretic interactions, in which the rewards depend on the
strategies of both the defender and the attacker. Therefore the standard Dec-
MDP model cannot be directly applied to model and solve this game-theoretic
interaction between the defender and attacker. Nevertheless, as mentioned ear-
lier, to speed up the computation of the optimal defender mixed strategy under
uncertainty, we decompose the problem into a game theoretic component and a
Dec-MDP component (that only models the interaction among defender agents
and does not need to model the interaction with the attacker nor have to con-
sider the different payoffs for the attacker).

2.2 Defender and Attacker Model

The main differences in the model that is presented in this section compared to
common security games are: the use of a target-time pair for the state of the
defender, the effectiveness of a single defender agent along with the effectiveness
of multiple agents at a target-time pair, and a joint policy as the defender’s
strategy. Common security game representations simply use a target and do not
consider the time element. We need to incorporate the time element as there
are multiple defender agents that must coordinate together to defend a target.
In addition, common security game models represent a target as either covered
or not covered by a defender, whereas we add an effectiveness value to show the
varying levels of coverage based on the number of agents at a given state. Prior
security game models do not use a joint policy for the defender’s strategy as it

5

b Target-time pair composed of (t, τ) where t is the target and τ is the time
U c
d(b) Defender payoff if b is covered by the defender (100% effectiveness)

Uu
d (b) Defender payoff if b is uncovered by the defender (0% effectiveness)
U c
a(b) Attacker payoff if b is covered by the defender (100% effectiveness)

Uu
a (b) Attacker payoff if b is uncovered by the defender (0% effectiveness)
R Total number of agents
sr State of agent r, composed of a location(target) t, and time τ
ξ Effectiveness of a single defender agent

eff(s, b) Effectiveness of the agents on target-time pair b, given the global state s
πj The the defender team’s jth pure strategy (joint policy)
J Set of indices of defender pure strategies

P j
b The expected effectiveness of target-time pair b from defender pure strategy πj

Ud(b,πj) Expected utility of the defender given a defender pure strategy πj , and
an attacker pure strategy of target-time pair b

Ua(b,πj) Expected utility of the attacker given a defender pure strategy πj , and
an attacker pure strategy of target-time pair b

x Mixed strategy of the defender (probability distribution over πj)
c Vector of marginal coverages over target-time pairs

Ud(b, c) Expected utility of the defender given marginal coverage c, and
an attacker pure strategy of target-time pair b

Table 1: Notation for game formulation

typically is represented as a set of targets that the defender agent must visit.
We use a joint policy for the defender’s strategy to model the defender agents’
coordination under uncertainty.

The model for the defender team is represented by the tuple similar to the one
for Dec-MDP as described in Section 2.1: 〈Ag, S,A, T, U〉. The main difference
between this tuple and the one presented in Section 2.1 is the last element, U ,
which represents the utility or reward of the state. The reward is no longer just
based on the state or action, as in traditional Dec-MDPs, but now is based on
the interaction between the defender and attacker.

A (naive) patrol schedule for each agent consists of a sequence of commands;
each command is of the form: at time τ , the agent should be at target t and
execute action a. The action of the current command takes the defender agent
to the location and time of the next command. In practice, each defender agent
faces execution uncertainty, where taking an action might result in the defender
agent being at a different location and time than intended. This type of execu-
tion uncertainty may arise due to unforeseen events. In our example metro rail
domain, this uncertainty may arise due to questioning of suspicious individuals.
The questioning of suspicious individuals results in the defender agent taking
additional time to determine the motive and actions of the individuals, thereby
taking a longer duration at the given location and potentially missing the next
train and delaying the whole schedule.

6

The attacker is assumed to observe the defender’s marginal coverage over
the target-time pair (defined in detail later in this section). The defender’s
marginal coverage is based on the frequency and number of agents at each
target-time pair. So in other words, the attacker cares about how often and
with how many agents each target-time pair is visited by the defender team.
The attacker’s strategy is to choose which target and location to attack, and
once that happens, the game terminates. For simplicity of exposition, we first
focus on the case with no global events, in which case the unaffected state su
never changes and can be ignored (we will consider these global events later
in Section 2.5). Actions at sr are decisions of which target to visit next. We
consider the following model of delays that mirror the real-world scenarios of
unexpected events: for each action ar at sr there are two states s′r, s

′′
r with a

nonzero transition probability: s′r is the intended next state and s′′r has the
same target as sr but a later time. Next, we discuss the defender’s effectiveness
at each state and how this impacts defender coordination.

2.3 Defender Effectiveness

This section explains the value of the defender’s effectiveness starting with a
single defender agent and then how this changes with the inclusion of multiple
defender agents. The defender’s effectiveness of a single defender agent visiting
a target-time pair is defined to be ξ ∈ [0, 1]. ξ can be less than 1 because visiting
a target-time pair will not guarantee full protection. For example, if a defender
agent visits a station while patrolling and walking through each of the platforms
and the concourse, she will be able to provide some level of effectiveness, however
she cannot guarantee that there is no adversary attack. Two or more defender
agents visiting the same target-time pair provides an additional effectiveness.
Given a global state s of defender agents, let eff(s, b) be the effectiveness of
the agents on target-time pair b. This effectiveness value, eff(s, b), is similarly
defined to be in the range [0, 1] with 0 signifying no coverage and 1 representing
full protection of the state b. We define the effectiveness of k agents visiting the
same target-time pair to be 1− (1− ξ)k. This corresponds to the probability of
catching the attacker if each agent independently has probability ξ of catching
the attacker. Then

eff(s, b) = 1− (1− ξ)
∑

i Isi=b (1)

where Isi=b is the indicator function that is 1 when si = b and 0 otherwise.
As more agents visit the same target-time pair, the effectiveness increases, up to
the maximum value of 1. The rationale for the increase in effectiveness as addi-
tional agents visit the same target-time pair, b, is that as the attacker observes
b, and notices multiple defender agents, this will provide further deterrence of
the attacker choosing to target b. If the attacker observes just one defender
agent, he can still choose to attack b, by first circumventing one defender agent.
However if there are multiple defender agents, the attacker would either need
additional help or decide to attack a different target-time pair. Although we

7

provide a function for the effectiveness value of eff(s, b), our algorithm to solve
this SSG would apply to other functions of effectiveness, including when dif-
ferent agents have different capabilities. The only constraint of other possible
functions of the effectiveness given the global state s and target-time pair b, is
that the value of the effectiveness is in the range [0, 1]. Other possibilities in-
clude representing defender agents that give an effectiveness value greater than
0 only when paired with another specialized type of defender agent. The next
section explains the defender’s pure strategy and the expected utility of both
the defender and attacker.

2.4 Defender Pure Strategy and Expected Utility

This section first explains the model of the defender team’s pure strategy and
then describes how the defender and attacker’s expected utility is computed
based on the pure strategy, mixed strategy, and marginal coverage. Denote
by πj the defender team’s jth pure strategy (joint policy), and πJ the set of
all defender pure strategies, where J is the corresponding set of indices. For
example, if there are two defender agents, then a sample πj includes a policy
for defender agent 1 (r1), and a policy for defender agent 2 (r2). An example
policy for r1 is: {((t1, 0) :Visit t2), ((t1, 1) :Visit t2), ((t2, 1) :Visit t3)}, while an
example policy for r2 is: {((t3, 0) :Visit t2), ((t3, 1) :Visit t2), ((t2, 1) :Visit t1)}.
The policy for r1 is a mapping from the local state of r1 to the corresponding
action. If r1 is at state (t1, 0), then the action that r1 would take is to Visit t2.
However, if r1 is at state (t2, 1), then she would choose action Visit t3. Looking
at the policy, r1 starts at t1 at time step 0, and tries to visit t2 and then t3,
while defender agent r2 starts at t3 at time step 0, and traverses toward t2 and
then t1. The global state s at time step 0, would be {(r1 : (t1, 0)), (r2 : (t3, 0))},
where r1 is at t1 and r2 is at t3.

Each pure strategy πj induces a distribution over global states visited. De-
note by Pr(s|πj) the probability that global state s is reached given πj . The
expected effectiveness of target-time pair b from defender pure strategy πj , is
denoted by P j

b ; formally,

P j
b =

∑
s

Pr(s|πj)eff(s, b) (2)

Given a defender pure strategy πj , and an attacker pure strategy of target-time
pair b, the expected utility of the defender is

Ud(b,πj) = P j
b U

c
d(b) + (1− P j

b)Uu
d (b) (3)

The attacker’s utility is defined similarly as:

Ua(b,πj) = P j
b U

c
a(b) + (1− P j

b)Uu
a (b) (4)

The defender may also play a mixed strategy x, which is a probability distribu-
tion over the set of pure strategies πJ . Denote by xj the probability of playing

8

pure strategy πj . Simply choosing a single defender pure strategy, πj , or a single
joint policy, is typically not the defender’s optimal strategy due to the various
constraints that limit the coverage over all the target-time pairs. For example,
a single defender pure strategy may only allow the defender team to visit half of
the possible target-time pairs. In this example, if the defender decides to select
a single pure strategy to execute, then the attacker would decide to attack one
of the target-time pairs that is not covered by the defender. Therefore, in this
situation, a mixed strategy for the defender that covers all possible target-time
pairs provides a better strategy for the defender. The players’ expected utilities
given mixed strategies are then naturally defined as the expectation of their
pure-strategy expected utilities. Formally, the defender’s expected utility given
the defender mixed strategy x and attacker pure strategy b is

∑
j xjUd(b,πj).

Let

cb =
∑
j

xjP
j
b (5)

be the marginal coverage on b by the mixed strategy x [66], and c the vector
of marginal coverages over target-time pairs. Then this expected utility can be
expressed in terms of marginal coverages, as

Ud(b, c) = cbU
c
d(b) + (1− cb)Uu

d (b) (6)

The model above assumes no global events, or when the unaffected state su
never changes. In the following section, we introduce global events and how it
impacts the model.

2.5 Global Events

A global event refers to some event whose occurrence becomes known to all
agents in the team, and causes one of the agents in the defender team to become
unavailable, causing others to fill in the gaps created. In our example domain,
global events correspond to scenarios such as bomb threats or crime, where a
agent must stop patrolling and deal with the unexpected event. The entire
defender team is notified when a global event occurs. Depending on the type of
event, a pre-specified defender agent, which we denote as the qualified defender
agent, will be removed from patrolling and allocated to deal with the event
once it occurs. This is because certain defender agents have capabilities best
suited towards addressing the global event, thereby having the pre-specified,
qualified defender agent stop patrolling and handle the global event while the
other defender agents continue to monitor and patrol.

To handle such global events, we include the global unaffected state in our
security game model. The global unaffected state is a vector of binary variables
over different types of events that may be updated at each time step τ . This
state is labeled as such because it is known by each defender agent but is not
affected by the defender team; the defender team has no control over this global
unaffected state. For example, a global state could be a vector < 1, 0, 1 > where

9

each element corresponds to the type of the event such as bomb threat, active
shooter, or crime. If the first element corresponds to a bomb threat and is set
to 1, that implies that a bomb threat has been received.

When the global unaffected state is updated (a global event occurs), this
results in a change in the state for both the qualified defender agent as well as the
other defender agents. The qualified defender agent stops patrolling to address
the global event while the remaining defender agents may change their strategy
and subsequent actions to account for the qualified defender agent leaving the
system. Transitions associated with global unaffected state, i.e., Tu(su, s

′
u) could

potentially be computed based on the threat/risk levels of various events at
the different time steps. The transitions associated with individual defender
agents, i.e., Ti(〈su, si〉, ai, s′i) are dependent on whether the defender agent is
responsible for handling a global event that has become active in that time step.
If su indicates that a bomb threat is active and i is the qualified defender agent,
then the valid joint policy indicates that the qualified defender agent handles
the global event and goes out of patrolling duty. If su indicates a bomb threat
and i is not the qualified defender agent, then agent i would choose an action ai
based on su with the knowledge that the qualified defender agent is no longer
patrolling.

Problem Statement: Our goal is to compute the strong Stackelberg
equilibrium of the new game representation that includes joint policies as defined
earlier as the pure strategies for the defender. In other words, we want to find
the optimal (highest expected value) mixed strategy for the defender to commit
to considering that a strategic adversary best responds to her strategy.

3 Approach to Solve Multiple Linear Programs
and Iterative Dec-MDP

This section begins with a linear program (LP) to solve for the defender’s opti-
mal strategy based on the game model discussed in the previous section (Sec-
tion 2). Given the exponential number of defender pure strategies (joint policies)
that are needed to solve the LP, we introduce a column generation framework [4]
to intelligently generate a subset of pure strategies for the defender. The space
of joint policies is very large. We look to Dec-MDP algorithms to cleverly search
that space [6, 14, 43, 54] as Dec-MDPs are used by researchers to coordinate
multiple agents when there is uncertainty in the system. This fits well in helping
to find a pure strategy for the defender agents in handling uncertainty. However,
optimal Dec-MDP algorithms are difficult to scale-up, and hence we use heuris-
tics that leverage ideas from previous work on Dec-MDPs [59]. We need to solve
multiple Dec-MDP instances as each computed joint policy is used as a single
pure strategy for the defender. The use of heuristics results in the possibility
that our algorithm does not find the optimal defender mixed strategy. However,
we show in the experimental results that the heuristic solution is able to scale-
up and perform better than algorithms that do not handle uncertainty (which

10

can scale-up but suffer from solution quality loss) in Section 5.4 or algorithms
that attempt to find the optimal solution (which may not suffer from solution
quality loss but cannot scale up) in Section 5.5 or algorithms that attempt to
find even higher quality solutions heuristically (they still fail to perform better)
in Section 5.6.2.

24

Input: = (t1, 1)

=(t1, 1) =(t1, 2) =(t1, 3)

=(t2, 1) =(t2, 2) =(t2, 3)

. . .

.

.

.

. . .

.

.

.

Target (t)

Time (τ)

LP1 LP2 LP3

LP7 LP8 LP9

.

.

.

Output: Defender Strategy

LP
1

Master

(Stackelberg Game

using LP)

Slave

(Iterative Dec-MDP)

Joint

Policy
Duals

Figure 1: Diagram of the System

Figure 1 gives a high level view of the system as a whole. The right half of
the diagrams shows that for each possible attacker choice (a target-time pair)
we solve a separate LP. For each LP, a column generation approach using a
master and slave component (shown on the left side of the diagram) is used to
find the defender strategy given the attacker’s choice. The master component is
solved by finding the optimal defender strategy of the Stackelberg game given
the set of defender joint policies generated by the slave component. The slave
component computes the joint policy by solving an iterative Dec-MDP. Each
part of the system is explored in depth in the rest of this section.

A standard method for solving Stackelberg games is the Multiple-LP al-
gorithm [12]. The Multiple-LP approach involves iterating over all attacker
choices. The attacker has |B| choices and hence we iterate over these choices.
In each iteration, we assume that the attacker’s best response is fixed to a pure
strategy α, which is a target-time pair, α = (t, τ).

11

max
c,x

Ud(α, c) (7)

Ua(α, c) ≥ Ua(b, c) ∀b 6= α (8)

cb −
∑

j∈J
P j
b xj ≤ 0 ∀b ∈ B (9)∑

j∈J
xj = 1 (10)

xj ≥ 0 ∀j ∈ J, cb ∈ [0, 1] ∀b ∈ B (11)

The LP for α, shown in Equations (7) to (11), solves the optimal defender
mixed strategy x to commit to, given that the attacker’s best response is to
attack α. Then among the |B| solutions, the solution that achieves the best
objective (i.e., defender expected utility) is chosen. In more detail, Equation (8)
enforces that the best response of the attacker is indeed α. In Equation (9), Pj

is a column vector which gives the values of expected effectiveness P j
b of each

target-time pair b given the defender’s pure strategy πj . An example of a set
of column vectors is shown below:

P =

j1 j2 j3

b1 0.0 0.5 0.4
b2 0.2 0.7 0.0
b3 0.5 0.6 0.2
b4 0.6 0.0 0.8

 (12)

Column Pj1 = 〈0.0, 0.2, 0.5, 0.6〉 gives the effectiveness P j1
bi

of the defender’s

pure strategy πj1 over each target-time pair bi. For example, policy πj1 has an
effectiveness of 0.5 on b3. Thus, Equation (9) enforces that given the probabili-
ties xj of executing mixed strategies πj , cb is the marginal coverage of b.

Figure 2 gives a diagram of how the Multiple-LP algorithm applies to our
solution approach. Focus first on the right side of Figure 2. There the figures
show several LPs. In particular, this approach generates a separate LP for each
attacker pure strategy denoted as α in Equations (7) to (11). For example,
the first LP that is solved, assumes that the attacker’s best strategy, α is to
attack target t1 at time τ = 1. The algorithm fixes the attacker’s best strategy,
α = (t1, 1), and then solves for the defender team’s strategy under the constraint
that the attacker’s best response is α. The algorithm then iterates to the next
LP, which corresponds to a new attacker strategy. Once all the LPs have been
solved, we compare the defender’s strategy for each attacker strategy/LP and
choose the one that gives the defender the highest expected utility.

For each LP that is being solved, the input is the attacker’s best strategy,
denoted as α, which is composed of a target and time. The output of each
LP is the defender’s strategy against an attacker whose best strategy is α. To
determine the defender’s strategy against the attacker, all the defender pure
strategies must be enumerated. However, in our game there is an exponential
number of possible defender pure strategies, corresponding to joint policies —

12

24

Input: = (t1, 1)

=(t1, 1) =(t1, 2) =(t1, 3)

=(t2, 1) =(t2, 2) =(t2, 3)

. . .

.

.

.

. . .

.

.

.

Target (t)

Time (τ)

LP1 LP2 LP3

LP7 LP8 LP9

.

.

.

Output: Defender Strategy

LP
1

Figure 2: Diagram of the Multiple-LP approach

and thus a massive number of columns that cannot be enumerated in memory —
so that the Multiple-LP algorithm cannot be directly applied. For N stations,
T time steps, and R defender agents, we will have (NT)R policies.

Since this grows exponentially large in proportion to the number of stations,
time steps, and defender agents, we turn to column generation to solve the LP
and intelligently compute a subset of defender pure strategies along with the
optimal defender mixed strategy. We solve an LP using a column generation
framework for each possible target-time pair for the attacker strategy and then
choose the solution that achieves the highest defender expected utility. The
column generation framework is composed of two components, the master and
slave. The master component solves the LP given a subset of defender pure
strategies (or joint policies). The slave component computes the next best
defender pure strategy or joint policy to improve the solution found by the
master component. We cast the slave problem as a Dec-MDP to generate the
joint policy for the defender team. In the next section, we explore in detail the
column generation framework.

3.1 Column Generation

The defender needs to know all possible pure strategies in order to compute
the optimal strategy against the attacker. However, as stated in the previous
section, the number of possible defender pure strategies grows exponentially

13

in the number of stations, time steps, and defender agents. To deal with this
problem, we apply column generation [4], a method for efficiently solving LPs
with large numbers of columns. At a high level, it is an iterative algorithm
composed of a master and a slave component; at each iteration the master
solves a version of the LP with a subset of columns, and the slave smartly
generates a new column (defender pure strategy) to add to the master.

Master

j1 j2

b1 0.0 0.5

b2 0.2 0.7

b3 0.5 0.6

b4 0.6 0.0

P =

Slave

j3

b1 0.4

b2 0.0

b3 0.2

b4 0.8

New Column =

j1 j2 j3

b1 0.0 0.5 0.4

b2 0.2 0.7 0.0

b3 0.5 0.6 0.2

b4 0.6 0.0 0.8

P =

Step 1:

Solve Master +

Obtain Duals
Duals

Step 3:

Solve Slave +

New ColumnStep 4:

Add Column +

Resolve Master

Step 2:

Update Slave

with Duals

Figure 3: Column generation illustration including the master and slave com-
ponents. The column generation algorithm contains multiple iterations of the
master-slave formulation.

Figure 3 gives an example that shows the master-slave column generation
algorithm. Note that there are four steps in this figure to explain the process
and interaction between the master and slave component. In the first step, the
master component solves an LP to generate a defender mixed strategy while also
computing the corresponding dual variables (Step 1). The master starts with a
subset of defender pure strategies represented as columns in P. In this example,
the master is solving the LP given two columns, j1 and j2. The dual values from
the master component are then used as input for the slave component (Step 2).

Then the slave component computes a defender pure strategy (joint policy)
and returns the column that corresponds to the defender pure strategy back to
the master component (Step 3). We show in this example that the column j3 is
generated by the slave component. The master component then adds this new
column to the existing set of columns, P, and then resolves the LP which now
includes the new column generated from the slave (Step 4). We see here that

14

now the master resolves the LP but with three columns now, j1 to j3. This
master-slave cycle is repeated for multiple iterations until the column generated
by the slave no longer improves the strategy for the defender. Next, we go in
detail about first the master component and then the slave component.

The master is an LP of the same form as Equations (7) to (11), except
that instead of having all pure strategies, J is now a subset of pure strategies.
Pure strategies not in J are assumed to be played with zero probability, and
their corresponding columns do not need to be represented. We solve the LP
and obtain its optimal dual solution.

The slave’s objective is to generate a defender pure strategy πj and add
the corresponding column Pj , which specifies the marginal coverages, to the
master. We show that the problem of generating a good pure strategy can be
reduced to a Dec-MDP problem.

To start, consider the question of whether adding a given pure strategy πj

will improve the master LP solution. This can be answered using the concept
of the reduced cost of a column [4], which intuitively gives the potential change
in the master’s objective when a candidate pure strategy πj is added. Formally,
the reduced cost f j associated with the column Pj is defined as:

f j =
∑

b
yb · P j

b − z (13)

where z is the dual variable of (10) and {yb} are the dual variables of Equation
family (9), and are calculated using standard techniques. If f j > 0 then adding

pure strategy πj will improve the master LP solution. When f j ≤ 0 for all j,
the current master LP solution is optimal for the full LP.

Thus the slave computes the πj that maximizes f j , and adds the correspond-

ing column to the master if f j > 0. If f j ≤ 0 the algorithm terminates and
returns the current master LP solution.

3.2 Dec-MDP Formulation of Slave

We formulate this problem of finding the pure strategy that maximizes reduced
cost as a transition independent Dec-MDP [6]. The rewards are defined so that
the total expected reward is equal to the reduced cost. The states and actions
are defined as before. We can visualize them using transition graphs: for each
agent r, the transition graph Gr = (N ′r, E

′
r) contains state nodes sr = (t, τ) ∈ Sr

for each target and time. In addition, the transition graph also contains action
nodes that correspond to the actions that can be performed at each state sr.
There exists a single action edge between a state node sr and each of the action
nodes that correspond to the possible actions that can be executed at sr. From
each action node ar from sr, there are multiple outgoing chance edges, to state
nodes, with the probability Tr(sr, ar, s

′
r) labeled on the chance edge to s′r. In the

illustrative example scenario that we have focused on, with there being delays,
each action node has two outgoing chance edges with one chance edge going to
the intended next state and another chance edge going to a different state which
has the same location as the original node but a later time.

15

Example: Figure 4 shows a sample transition graph showing a subset of
the states and actions for agent i. Looking at the state node (t1, 0), assuming
target t1 is adjacent to t2 and t5, there are three actions, Stay at t1,Visit t2,
or Visit t5. If action, Visit t2 is chosen, then the transition probability is:
Ti((t1, 0),Visit t2, (t2, 1)) = 0.9 and Ti((t1, 0),Visit t2, (t1, 1)) = 0.1.

t1

t2

t5

0 1 2

Time Steps

Ta
rg

e
ts

… …

…

Legend

State node

Action node

0.9
0.9

0.9

0.1

0.1

0.1
chance edge

action edge

1.0

0.9

0.1

1.0

Set of action

edges

Figure 4: Example Transition Graph for one defender agent

The transition independent Dec-MDP consists of multiple such transition
graphs, which we represent as Gr. There is however a joint reward function
R(s). This joint reward function, R(s), is dependent on the dual variables, yb,
from the master, and the effectiveness eff(s, b) of agents with global state s on
target-time pair b, as defined in Section 2:

R(s) =
∑

b
yb · eff(s, b). (14)

Multiple transition graphs are needed because each defender agent may have a
different graph structure and/or action space.

We provide an example for the joint reward function R(s), continuing from
the scenario described in Section 2.4. The example global state is si = {(r1 :
(t1, 0)), (r2 : (t3, 0))}, where r1 is at t1 and r2 is at t3. Since there are only
two target-time pairs in this global state, we only need to sum over these two
pairs because for all other pairs, the effectiveness, eff(s, b) = 0. If we define
ξ = 0.6, the defender’s effectiveness of a single agent visiting a target-time pair,
b1 = (t1, 0), and b2 = (t3, 0) then:

16

R(s) =
∑

b
yb · eff(s, b) = yb1 · 0.6 + yb2 · 0.6 (15)

Proposition 3.1. Let πj be the optimal solution of the slave Dec-MDP with
reward function defined as in (14). Then πj maximizes the reduced cost f j
among all pure strategies.

Proof. The expected reward of the slave Dec-MDP given πj is

∑
s

Pr(s|πj)R(s) =
∑

b
yb
∑

s
Pr(s|πj)eff(s, b) (16)

=
∑

b
ybP

j
b = f j + z. (17)

Therefore the optimal policy for the Dec-MDP maximizes f j .

3.3 Solving the Slave Dec-MDP

If the Dec-MDP is solved optimally each time it is called in the master-slave iter-
ation, we would achieve the optimal solution of the LP. Unfortunately, optimally
solving Dec-MDPs, particularly given large numbers of states (target-time pairs)
is extremely difficult. The optimal algorithms from the MADP toolbox[55] along
with the MPS algorithm [14] are unable to scale up past four targets and four
agents in this problem scenario. Experimental results illustrating this outcome
are shown in Section 5. Hence this section focuses on a heuristic approach. As
mentioned earlier, this implies that we do not guarantee achieving the optimal
value of each LP we solve; however, we do show in Section 5 that this approach
scales better than one attempting to achieve the optimal and one that scales
but does not handle uncertainty.

Our approach, outlined in Algorithm 1, borrows some ideas from the TREMOR
algorithm [59], which iteratively and greedily updates the reward function for
the individual agents and solves the corresponding MDP. We do not use the
TREMOR algorithm but reference this algorithm as the closest algorithm in
the Dec-MDP literature to the one implemented in this section. In particular,
unlike TREMOR, there is no iterative process in our algorithm. More specifi-
cally, for each agent r, this algorithm updates the reward function for the MDP
corresponding to r and solves the single-agent MDP; the rewards of the MDP
are updated so as to reflect the fixed policies of previous agents.

The MDP for each agent consists of: Sr, the set of local states sr in the
form of a tuple (t, τ); Ar, the set of actions that can be performed by the agent;
T (sr, ar, s

′
r), the transition function of the agent at state sr taking the action ar

and ending up at state s′r; and R(sr), the reward function which represents the
reward for visiting and covering state sr. The value of the reward is determined
both by the dual variable yb, from the master and the policies of defender agents
that have already been computed from previous iterations.

17

Algorithm 1 SolveSlave(yb, G)

1: Initialize πj

2: for all r ∈ R do
3: µr ← ComputeUpdatedReward(πj , yb,Gr)
4: πr ← SolveSingleMDP(µr,Gr)
5: πj ← πj ∪ πr
6: Pj ← ConvertToColumn(πj)
7: return πj ,Pj

In more detail, this algorithm takes the dual variables yb (refer Section 3.1)
from the master component and G as input and builds πj iteratively in Lines 2–
5. Line 3 computes vector µr, the additional reward of reaching each of agent
r’s states.

Compute Updated

Reward

Solve Single

MDPIndividual

policy (r)

Reward Vector (r)

Add Policy to

Joint policy

Joint policy (j)

Convert Joint Policy

to Column

Joint policy (j)

Run for r

iterations

Send column

to Master Component

Input from Master:

Dual variables (yb)

Transition Graph (G)

Figure 5: Diagram of the algorithm for the slave component

Figure 5 gives a diagram of how the slave component operates. It receives
as input from the master component the dual variables yb and the transition
graph G. It then solves and generates an individual policy, πr, for each agent,
based on the reward vector. This reward vector takes into account the dual
variables from the master along with the individual policies of agents that have
already been computed. After all individual policies have been generated, the
joint policy is converted into a column and then sent to the master.

Consider the slave Dec-MDP defined on agents 1, . . . , r (with joint reward
function (14)). The additional reward µr(sr) for state sr is the marginal contri-

18

bution of r visiting sr to this joint reward, given the policies of the r− 1 agents
computed in previous iterations, πj = {π1, . . . , πr−1}. Specifically, because of
transition independence, given {π1, . . . , πr−1} we can compute the probability
psr (k) that k of the first r−1 agents have visited the same target and time as sr.

Then µr(sr) =
∑r−1

k=0 psr (k)(eff(k+1)−eff(k)), where we slightly abuse nota-
tion and define eff(k) = 1− (1− ξ)k. µr(sr) gives the additional effectiveness if
agent r visits state sr by computing the effectiveness of agent r visiting state sr
(incorporating the policies of the agents that have already been computed) and
subtracting the effectiveness due to just the previous agents and not agent r.
For example, if two previously computed agents already visit a state sr, then if
the third agent visits state sr, the individual reward for the third agent will not
be the joint reward of having three agent visit the state, but will instead be the
additional effectiveness of having three agents visit the state versus two agents.
This avoids double-counting for states that have been visit by other previously
computed agents.

Line 4 computes the best individual policy πr for agent r’s MDP, with re-
wards µr. We compute πr using value iteration (VI):

V (sr, ar) = µr(sr) +
∑

s′r
Tr(sr, ar, s

′
r)V (s′r) (18)

where V (sr) = maxar
V (sr, ar) and πr(sr) = arg maxar

V (sr, ar).
The way that the Dec-MDP value function is decomposed into the individ-

ual MDP value function is that for each MDP for an agent, the rewards are
updated/precomputed based on the policies of prior agents that have already
been computed. For the first agent, the value function on each state for the
MDP would simply be the reward if there is just one agent. This agent then
solves the MDP to generate an individual policy. For the second agent, the
value function now gets updated based on the individual policy of the first
agent. More specifically, the value function for the second agent gets updated
by modifying the rewards (µr(sr)) on the states that the first agent visits, to
reflect the additional reward/effectiveness that the defender team would receive
if a second agent visits that same state versus having just a single agent visit
that state. In particular, the reward vector, µr is being changed in the value
function for the different agents (in Line 3).

4 Heuristics for Scaling Up

Without column generation, our model of Dec-MDPs in security games would
be faced with enumerating (NT)R columns, making enumeration of defender
pure strategies impossible, let alone trying to find a solution. While column
generation is helpful, each LP still does not scale well and thus in this section,
we present three different approaches to further improving the runtime. We
first started by examining what component in the algorithm was consuming the
majority of the time needed to find the defender’s strategy. The slave component
within the column generation was found to be taking significantly more time

19

than the master component. When running the algorithm with 8 targets, 8 time
steps, and 8 agents, the master component took an average of 7.2 milliseconds
while the slave component took an average of 26.3 milliseconds. Increasing the
number of agents from 8 to 12 resulted in the master component taking an
average of 7.3 milliseconds and the slave component taking an average of 101.3
milliseconds. Further increasing the number of agents from 12 to 16, the master
component took on average 7.5 milliseconds while the slave component took
on average 1,229.8 milliseconds. Thus, as the number of agents increased, the
master component did not increase in runtime while the runtime for the slave
component increased exponentially from 26.3 milliseconds to 101.3 milliseconds,
and then to 1,229.3 milliseconds. This demonstrates that the slave component
is clearly a bottleneck.

As discussed in Section 3.1, the column generation approach requires mul-
tiple master-slave iterations, and thus there are three different approaches that
could be used to attempt to improve the runtime of the column generation pro-
cess by focusing on the slave component. First, we focus on reducing the number
of iterations that the column generation algorithm needs to execute, thereby re-
ducing the number of times the slave component is called in Section 4.1. Second,
we then concentrate on decreasing the runtime of a single slave iteration (which
we find to take significantly more time than the master component) to aid in
scaling up to more defender agents in Section 4.2. The third approach that was
considered to improve the runtime of the algorithm was the idea of computing
a higher quality solution for the slave component so that the number of total
iterations needed by column generation would be reduced (Section 4.3).

4.1 Reducing the Number of Column Generation Itera-
tions

The initial approach starts with each LP computing its own columns (i.e., cold-
start). However, this does not scale well and thus we build on this approach
with several heuristics for scale-up that focuses on reducing the amount of times
column generation needs to be executed:

Append: First, we explored reusing the generated defender pure strategies
and columns across the multiple LPs. The intuition is that the defender strate-
gies/columns generated by the master-slave column generation algorithm for an
LP might be useful in solving subsequent LPs, resulting in an overall decrease
in the total number of defender pure strategies/columns generated (along with
fewer iterations of column generation) over all the multiple LPs. Figure 6 gives
an example of how the Append heuristic shares the columns across different
LPs. This figure shows two of the multiple LPs that need to be solved (refer to
Figure 2 for the diagram of the Multiple-LP approach). In this example, in the
first LP, the column generation approach outputs 80 columns or defender pure
strategies in determining the defender’s strategy, when the attacker’s optimal
strategy is to attack target-time pair (t1, 1). Then the second LP, where the
attacker’s optimal strategy is set to (t1, 2) is solved. The 80 columns that were
generated to solve the first LP are then carried over to be used in the second

20

25

= (t1, 1) = (t1, 2)

LP1
LP2

j1 j2 … j80

b1 0.0 0.5 … 0.3

b2 0.2 0.7 … 0.0

b3 0.5 0.6 … 0.2

b4 0.6 0.0 … 0.7

j1 j2 … j80 j81 … j134

b1 0.0 0.5 … 0.3 0.2 … 0.7

b2 0.2 0.7 … 0.0 0.5 … 0.1

b3 0.5 0.6 … 0.2 0.7 … 0.2

b4 0.6 0.0 … 0.7 0.0 … 0.4

Figure 6: Example of the Append heuristic

LP (as denoted by the dashed line box). To extend the example shown in this
figure, all 134 columns that are used in the second LP will then be carried over
to the third LP. This continues for all subsequent LPs.

Cutoff: To further improve the runtime, we explored setting a limit on the
number of defender pure strategies generated (i.e., the number of iterations of
column generation that is executed) for each LP.

Ordered: With this limit on the columns generated, some of the |B| LPs
return low-quality solutions, or are even infeasible, due to not having enough
columns. Combined with reusing columns across LPs, the LPs that are solved
earlier will have fewer columns. Since we only need a high-quality solution for
the LP with the best objective, we would like to solve the most promising LPs
last, so that these LPs will have a larger set of defender pure strategies to use.
While we do not know apriori which LP has the highest value, one heuristic that
turns out to work well in practice is to sort the LPs in increasing order of Uu

a (b),
the uncovered payoff of the attacker strategies (target-time pairs) chosen; i.e.,
to solve the LPs that correspond to attack strategies that are less attractive to
the attacker first, and LPs (attack strategies) that are more attractive to the
attacker later.

21

4.2 Reducing Runtime for a Single Slave Iteration

The heuristics in Section 4.1 target reducing the total number of iterations, but
not the run-time within a single slave iteration. Here, we focus on reducing the
runtime of a single iteration which helps to scale up as the number of agents
increases. The importance of scaling up to handle defender teams that are com-
prised of multiple agents is demonstrated in a large scale real-world experiment
of security games that had to plan for 23 defender security teams [18].

To deal with the inability of the previous heuristics in Section 4.1 to handle
many defender agents, we explored the following desiderata to guide our selec-
tion of an idea to allow us to scale up: (1) The idea has to focus on the part
of the entire algorithm that actually causes a slowdown. (2) If we introduce a
heuristic, the slave should report the column truthfully to the master. If the
slave does not report the column truthfully, then the master will compute a
solution that is inaccurate for the LP (in the Multiple-LP approach). If the so-
lution/value for the LP is incorrect, then we may end up selecting the best LP
incorrectly and choose a low valued strategy. (3) The heuristic itself should be
very simple. The master calls the slave multiple times within any given problem
instance, and it is important that the slave generate a column in a timely fash-
ion. (4) The heuristic should preferably lead the slave to be conservative, i.e.,
it is preferred if the heuristic does not place fewer agents on important targets.

The rationale for why the slave component was taking a long time to run,
was the exponential increase due to two factors: (1) the size of the state space,
when the number of agents increases, and (2) the computation of the updated
rewards that is needed to determine the effectiveness at each state based on
the defender’s joint policy (Algorithm 1, Line 3). For example, if there are 16
defender agents and each agent has a non-zero probability of visiting state s,
then the computation of the updated reward would require iterating through all
subsets of the 16 defender agents, or

(
16
1

)
+
(
16
2

)
+ · · ·+

(
16
16

)
= 65, 535 possible

combinations of defender agents.

Algorithm 2 ComputeEffectiveness(π, b)

1: Initialize w
2: Rs ← FindResourcesAtState(π, b)
3: for n = 1 . . . |Rs| do
4: C ← CombinationGenerator(R,n)
5: for all c ∈ C do
6: p← ComputeEffectInstance(c, π, b)
7: w ← w + p
8: return w

To improve the runtime to handle a larger number of agents, we used the
desiderata as a guideline. We explored setting a limit on the number of agents
in the computation of the effectiveness of a given state, eff(s, b), but do not
actually place a limit in the game and in the column that is computed by the
slave component and used by the master component. The reasoning to place a

22

limit on the number of agents is that the effectiveness for the defender does not
significantly increase when there are already a few defender agents at a state.
For example, if a state is already covered by ten defender agents, adding an
additional defender agent will not provide a significant increase in effectiveness,
compared to the additional benefit if there was just one defender agent and
another agent was added. Algorithm 2 gives the algorithm of computing the
effectiveness of joint policy π on state b. Algorithm 2 is used in Algorithm 1,
for the computation of the updated rewards (Algorithm 1, Line 3) and in trans-
forming the policy that encompasses all agents into a column for the master
(Algorithm 1, Line 6). In both cases, we need to enumerate all combinations
of agents for each state to compute the effectiveness of the defender agents at
each state. The computation of the updated rewards (Algorithm 1, Line 3) is
used more expansively in the slave component compared to the conversion of the
policy to a column (Algorithm 1, Line 3) and thus we focus on improving the
runtime and computation of the updated rewards. Since this updated computa-
tion of the effectiveness can potentially generate a lower effectiveness value (as
described in detail below), by not modifying the computation of the policy to a
column, the algorithm still provides an accurate column for the master compo-
nent. By placing a limit on the maximum number of agents at any given state,
the solution quality may decrease because the resulting joint policy computed
by the slave does not consider the increased effectiveness of additional agents
above the imposed limit, but at the end of the slave calculation (Algorithm 1,
Line 6) the column return to the master accurately describes the effectiveness
of the joint policy.

Algorithm 2 starts by computing Rs, which is the set of agents that have a
non-zero probability of visiting state b (Line 2), by scanning through the pol-
icy of each agent to see if there is a possibility of reaching state b. It then
iterates from 1 to the total number of agents that have a non-zero probabil-
ity, or |Rs|, of visiting state b. This value of n, represents the number of
agents that visit state b, where the algorithm computes the probability and
corresponding effectiveness. In Line 4, the algorithm generates all possible
combinations of agents of size n. For example, if R = 5 and n = 2, then
C = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}, where the
numbers in each set correspond to different agents. For each combination, the ef-
fect of each particular combination is computed and added together (Lines 6-7).
For example, if c = (1, 4), then ComputeEffectInstance(c, π, b) (Line 6) would
compute the effectiveness of two agents at state b, multiplied by the probability
of agent 1 and 4 at state b, along with the probability of all other agents not
being at state b.

During this computation of the effectiveness of joint policy π on state b,
instead of computing the effectiveness by allowing up to |Rs| agents, we place a
limit on the maximum number of agents (set to z) that can be at state b (just
in our calculation of the updated rewards but not while converting the policy
to a column). To accomplish this, Algorithm 2 is modified at Line 3 so instead
of n iterating from 1 to |Rs|, it will instead iterate from 1 to z.

This simplifies the computation of the effectiveness, eff(s, b), for all states

23

and in turn improves the runtime of the slave. This is because the algorithm
does not need to compute all combinations of agents from lines 3 to 7, which
grows exponentially large as the number of agents increases. By placing a limit
of at most z agents to consider while calculating the effectiveness, we are able
to improve the runtime and scale up to a larger number of agents. Despite this
limit in calculating the effectiveness, in reality more than z agents may visit this
state.

However, when converting the defender’s joint policy to a column (Algo-
rithm 1, Line 6), we can compute the exact effectiveness, eff(s, b), by calling
Algorithm 2 without placing a limit on the maximum number of agent. In Al-
gorithm 2, Line 3, instead of just iterating from 1 to z, the algorithm iterates
from 1 to |Rs| to compute an exact effectiveness of the policy for the column
that is returned to the master component. In other words, we speed up policy
computation but ensure that the value of the policy is correctly returned to the
master.

Referring to the diagram of the slave component in Figure 5, the changes
that are made are within the Compute Updated Reward step. This is where
the limit is placed on the maximum number of agents that can visit a state. In
the step where the joint policy is converted to a column (once the slave is done
computing individual policies for each agent), this computation does not place
a limit on the maximum number of agents to ensure that the column returned
to the master is a correct representation of the joint policy (fulfilling the second
desiderata criteria).

The idea we present above fulfills all four points of the desiderata in scaling
up to handle many defender agents. It focuses on modifying the slave com-
ponent, which has been shown to consume the majority of the runtime. The
heuristic, while modifying the computation of the effectiveness value in the up-
dated rewards, still reports an accurate column for the master component. If
the column generated underestimated the effectiveness, this would result in an
incorrect value for the LP as computed by the master. This may cause the
Multiple-LP algorithm to choose the best LP incorrectly and therefore result in
low valued strategy for the defender. This heuristic, as shown in Section 5.8, is
extremely beneficial in speeding up while still providing a high level of solution
quality.

4.3 Improving the Solution Quality of the Slave

Another approach that we considered in improving the runtime of the algorithm
was generating a higher quality solution for the slave component (even at the
expense of the slave component running slightly slower) with the notion that
if the slave component produces a better column for the master, the column
generation algorithm will converge more quickly to a solution, thereby speeding
up the overall algorithm.

In the slave component, in Algorithm 1, we generate a policy for each agent
by iterating over each agent in a single iteration (Line 2). Therefore, the policy
of the first agent does not take into account the policies of all other agents.

24

The slave computes the optimal policy for the first agent assuming there are no
other agents. The slave component then computes the optimal policy for the
second agent given the policy for the first agent (which is now fixed and does
not change). The policy of the third agent is computed with the knowledge of
the policies of the first two agents. This continues until policies are generated
for all agents.

Algorithm 3 SolveRepeatedSlave(yb, G)

1: Initialize πj , ψp, ψc

2: while ψp 6= ψc do
3: for all r ∈ R do
4: πj ← πj − πr
5: µr ← ComputeUpdatedReward(πj , yb,Gr)
6: πr ← SolveSingleMDP(µr,Gr)
7: πj ← πj ∪ πr
8: ψp ← ψc

9: ψc ← ComputeObjective(πj)
10: Pj ← ConvertToColumn(πj)
11: return πj ,Pj

As mentioned, the policy of the first agent does not consider the policies of
any other agent as we use this heuristic to be able to scale up. We proposed
modifying the slave component to include a repeated iterative process where
instead of a single for loop (Algorithm 1, Line 2), we repeatedly iterate Lines 2
- 5, until we reach a local optimum where the policies of the defender agents do
not change across iterations.

Algorithm 3 outlines the updated repeated iterative slave. ψp and ψc repre-
sent the computed objective value of the joint policy for the previous iteration
and current iteration respectively. This is used to determine whether the joint
policy has changed across iterations. The main difference between Algorithm 3
and Algorithm 1 is the outer while loop (Line 2) that compares the objective
across iterations to see if it has improved or reached a local maximum. In
Line 4, the joint policy, πj is modified by removing the current individual pol-
icy of agent r. The updated individual policy for the agent r is then recomputed
and re-added to the joint policy. After the individual policies of each agent is
computed, the objective of the joint policy is computed in Line 9. While further
improvements could be made, the question we focused on is whether this style
of improvement in solution quality of individual joint policies would help us
reduce the total run-time.

The rationale for this repeated iterative process in the slave is to improve the
joint policy (and equivalent column) that is computed by the slave component
and to provide a higher defender expected utility. First, we tested the solution
quality of a single instance of running the slave, comparing the output of the
single iteration slave versus the repeated iterative slave. This is to verify that the
solution quality of the joint policy from the repeated iterative slave is higher

25

1 2 3 4 5 6 7 8
Single iteration 6.939 5.152 3.009 3.160 5.094 4.374 6.676 7.083
Repeated iterative 7.305 5.416 3.053 3.246 5.432 4.422 6.821 7.203

Table 2: Comparison of solution quality for only one instance of the slave when
using a single iteration versus repeated iterative slave

than the joint policy computed by the single iteration slave. We show this
comparison in Table 2 where each column represents the solution quality after
running a single instance of the slave component. Therefore, each of the values
in this table measure the solution quality of a single defender pure strategy or
joint policy.

In a follow-up test, we compared the performance of the repeated iterative
slave versus a single iteration slave run over the whole game instance to find the
defender’s mixed strategy over the set of pure strategies generated via the col-
umn generation framework. This is different from the results in Table 2, where
in this test we run the Multiple-LP algorithm including column generation to
determine the defender’s expected utility and mixed strategy. In a preliminary
test, with 5 targets, 8 time steps, and 4 agents and averaged over 15 game
instances, in comparing the repeated iterative slave versus a single iteration
slave, the solution quality (defender expected utility) when using a repeated
iterative slave was 0.861 while the solution quality for the single iteration slave
was 0.849. The maximum improvement of the repeated iterative slave over the
single iteration slave was 0.057. This shows that the overall solution quality
of the repeated iterative slave is higher than the single iteration slave. This is
what we expect for the repeated iterative slave as it computes a locally optimal
joint policy compared to the single iteration slave.

5 Evaluation

This section begins by providing a motivating domain of security in the metro
rail in Section 5.1. Section 5.2 introduces, motivates and provides background
on security games. Section 5.3 provides the details of the parameters and sce-
narios used in the experiments. Section 5.4 explores the importance of modeling
teamwork and uncertainty. Section 5.5 follows with a comparison of the vari-
ous Dec-MDP solvers. Section 5.6 evaluates the various runtime improvements
explained in Section 4. Section 5.7 examines the robustness of the algorithms.
Finally Section 5.8 provides a summary of all the heuristics presented in this
paper.

5.1 Motivating Domain: Security of Metro Rail

In recent news, there have been terrorism related events pertaining to metro rail
systems across the world. In April 2013, two men were arrested for plotting to
carry out an attack against a passenger train traveling between Canada and the

26

United States [11]. In August 2013 an article reported planned attacks by Al
Qaeda on high-speed trains in Europe which prompted authorities in Germany
to step up security on the country’s metro rail system [47]. A presentation by
Arnold Barnett suggested that the success of aviation security may be shifting
criminal/terrorist activity towards other venues like commuter metro rail sys-
tems, and he also argues that “the prevention of rail terrorism warrants high
priority” [25].

In the metro rail domain, the defender agents (i.e., canine, motorized) patrol
the stations while the adversary conducts surveillance and may take advantage
of the defender’s predictability to plan an attack. With limited agents to devote
to patrols, it is impossible for the defender to cover all stations all the time. The
defender must decide how to intelligently patrol the metro rail system. Addi-
tional constraints include the defender agents having to travel on the train lines,
thus being limited in path and sequences of stations and having to adhere to the
daily timetables of the trains. Recent research on security games focused on the
metro rail domain include the computation of randomized patrol schedules for
the Singapore metro rail network [60] and security patrolling for fare inspection
in the Los Angeles Metro Rail system [30].

18

t
1

t
4

t
2

t
3

t
5

t
6 t

7

t
8 t

9

t
11 t

13
t
12

t
15

t
14

t
10

Patrol #1

Patrol #2

Patrol #3

Figure 7: Example of the metro rail domain

In Figure 7, we give an example of the metro rail domain. Each of the circles
represent a station, with the various lines corresponding to a separate metro
rail line. For example, one line would be composed of the stations/targets:
{t4, t5, t6, t7}. Another metro rail line is composed of stations {t1, t5, t9, t14}.

27

Not all stations have the same payoff, for example some stations may have
transfers between multiple train lines and are more attractive for the adversary
to attack (as shown in the figure with stations t5, t9, and t12 being represented
with a larger circle). In this figure, we give three possible patrols that a single
defender agent can execute with a single patrol being unable to visit all of the
stations given the time constraints. The path of patrol 1 starts at station t4,
travels to station t5, then visits t9, and finally ends with station t14.

Defender agents may engage in teamwork to patrol certain key areas that
may be advantageous in thwarting the adversary compared to individual pa-
trolling. What we mean is that defender agents may execute multiple patrols,
e.g., Patrol 1 and 2 in Figure 7, and coordinate to visit a single station simul-
taneously (like station 5). Thus, if the adversary observes a coordinated set
of defender agents patrolling a station, he will have to overcome multiple de-
fenders if he decides to attack. To address teamwork in the metro rail domain
along with the constraint that the defender agents must travel on the train lines
that adhere to a fixed daily schedule (e.g., to allow the defenders to arrive si-
multaneously at a train station), we model the time as discrete, based on the
train arrivals and departures. Indeed such discrete time is important to repre-
sent since even individual defender agent actions are based on train arrival and
departure times.

Within this metro rail domain, we can see three factors that complicate
teamwork and are not addressed by previous work in security games. First, un-
certainty in execution may cause miscoordination. In particular, while defender
agents are on patrol, one or more of them may be forced to deviate from the
given patrol due to unforeseen events (we denote as execution uncertainty), such
as questioning of suspicious individuals which results in delays and uncertainty
in the patrol – while still needing to coordinate with other agents. This type of
uncertainty occurs on a local level to the individual defender agent and is not
known by the other defender agents (due to limited communication as described
below). Using the example discussed above of teamwork, e.g., patrol 1 and 2,
this type of uncertainty would cause the patrols to arrive at station 5 at different
times, instead of having the agents visit station 5 together.

Second, a global event may cause a agent to leave the system and stop
patrolling. This type of global event affects the entire team and impacts the
coordination among patrol agents which is different from the local level events
that may occur to an individual defender agent. One of the defender agents may
get interrupted to deal with a serious bomb threat – the entire team may be
alerted to this threat via an emergency channel and the responsible agents may
take over the response, resulting in the agent stopping the patrol and requiring
others to fill in any gaps as a team. The remaining agents will continue to patrol
the metro rail system to guard against subsequent future attacks that may arise.
Third, in this metro rail domain there is often limited communication among
the defender agents. Reasons for this limited communication include the trains
and stations being underground or the use of cell phones being jammed to
avoid triggering of explosions or radio giving away the defender’s coordinates
or information (with the emergency channel reserved for emergencies). This

28

prevents defender agents from constantly communicating with other agents to
determine their location.

5.2 Security Games with an Example Application in the
Metro Domain

Security games were first formalized by Kiekintveld et al. [31] which is based
on a two-player Stackelberg game between a defender (leader) and an attacker
(follower). In a security game the leader (defender) plays a strategy first while
the follower (attacker) observes the defender’s strategy before choosing his re-
sponse [20, 29, 57]. Thus, using the Stackelberg (i.e., leader-follower) model as a
basis for security games allows us to capture the attacker’s conducting of surveil-
lance of the defender strategy before launching any major attack [31, 45, 64].
The security game is a two stage game: the defender plays a mixed strategy and
the attacker then responds with an attack on a time and target; the game then
terminates. The defender does not get to observe the attacker or form beliefs
about the attacker. The focus of this section is how the security game model
applies to the metro domain as considered in previous work such as in [30], but
without coordination of multiple agents under uncertainty.

In this model, both the attacker and defender have a set of possible pure
strategies. The attacker’s pure strategies correspond to the set of target-time
pairs, B, where each target-time pair b = (t, τ) is defined as t being the target to
attack and τ being the time point to carry out the attack. In the train domain,
targets correspond to stations in the metro system. The attacker chooses a single
target-time pair to attack based on the observation of the defender’s marginal
coverage (defined in detail later in Section 2, but based on the concepts of
marginals introduced in [31]). The defender’s pure strategies correspond to
visiting a set of target-time pairs given a set of agents. By convention, in the
rest of the paper, we refer to the defender as she and attacker as he.

The payoffs for both the attacker and defender are dependent on whether
the target-time pair is covered by the defender or left uncovered (based on the
strategy of the defender). The defender’s actions and capabilities influence the
effectiveness of coverage on target-time pairs, allowing for partial effectiveness.
Each target-time pair b has a payoff associated with it for both the attacker
and defender, with U c

d(b) denoting the payoff for the defender if b is covered
(100% effectiveness), and Uu

d (b) denoting the payoff for the defender if b is
uncovered (0% effectiveness) — we define defender expected utility under partial
effectiveness later[27, 50, 66]. We choose to have payoffs on both the location
and time, due to the payoff being dependent on time, e.g., in the train domain,
at rush hour the payoffs are larger than in the middle of the night with very
few passengers. The payoffs are influenced by the number of people at the
station/trains because if an attack is carried out when there are a lot of people
and the station is more crowded, then the attack will result in a greater number
of deaths and injuries compared to an attack when the station and train lines
are not as busy.

The payoffs for the attacker are in the same format, U c
a(b) and Uu

a (b). A

29

common assumption for security games is that U c
d(b) > Uu

d (b) and U c
a(b) <

Uu
a (b), i.e., when a defender covers b, she receives a higher reward while the

attacker receives a lower reward compared to when the defender does not cover
b [5, 28, 56]. The model in our paper allows a non-zero-sum game, where the
sum of the defender’s and attacker’s payoff values may be non-zero.

The objective in the security game is to compute the defender mixed strategy
that maximizes the defender’s utility given the attacker’s strategy where the
attacker has full knowledge of the defender’s strategy. In other words, the goal
in security games is one of optimizing the use of the defender’s limited security
agents while taking into account the attacker’s ability to observe the defender’s
mixed strategy and to respond optimally to such a strategy. Note that we
compute the mixed strategy for the defender but only need to consider the pure
strategies of the attacker [42]. This is because given a fixed mixed strategy of
the defender, the attacker faces the problem that contains linear rewards and
thus if a mixed strategy is optimal for the attacker, then so are each of the
pure strategies in the support set of the mixed strategy (pure strategies that
have a non-zero probability). Therefore, we do not need to consider the mixed
strategies of the attacker.

This optimization goal is equivalent to finding the Strong Stackelberg equi-
librium (SSE), which was first proposed by Lietmann [33]. Significant research
on the strong Stackelberg equilibrium versus other types of Stackelberg equilib-
rium has already been done in previous work and led to SSE being commonly
used in security game research [3, 12, 19, 26, 27, 28, 30, 31, 44, 45, 49, 50, 66].

5.3 Experimental Setup

The experiments detailed in the rest of this section were performed on a quad
core Linux machine with 12 GB of RAM and 2.3 GHz processor speed. The test
results were averaged over 30 game instances, with each game having random
payoffs in the range [-10,10]. Unless otherwise stated, the scenarios are run
over 8 targets, 4 agents, a patrol time of 80 minutes discretized into 10 minute
intervals, 5% probability of delay, and 5% probability of a global events, using
VI with append + cutoff + ordering. The graphs of the scenarios are formed by

connecting targets together in lines of length 5, and then randomly adding |T |2
edges between targets, to resemble train systems in the real world with complex
loops. All key comparisons where we assert superiority of particular techniques,
e.g., as in Figure 20, are statistically significant with p < 0.01.

5.4 Importance of Teamwork and Uncertainty

In this section, we focus on showing that the problem we are solving and the
way we model it, provides significant improvement over previous models. The
purpose is to show that modeling and solving for defender teamwork and uncer-
tainty is an important research topic and that generating a high quality solution
is not trivial. Given the complexity of the problem and model that we are solv-
ing, a reasonable question would be whether solving a more simple model, such

30

as one that does not take into account the effectiveness of multiple agents or un-
certainty, would provide a solution quality that is “good enough” or close to the
solution that we receive from our algorithm that takes into account teamwork
and uncertainty. This section shows that this is not the case, where solving a
more simple model provides a significantly lower solution quality compared to
the model that we present in this paper. In addition, these experiments are
benchmarks for our algorithm in providing lower bounds. We first demonstrate
that the algorithm we use to solve this model provides a significant improvement
over a naive approach of a uniform random strategy. Next, we present three
properties that we investigated: (i) defender teamwork in the form of additional
effectiveness for the defender team as multiple agents visit the same state; (ii)
global events that are handled in our model versus one that ignores these types
of events; (iii) execution uncertainty in the form of delays in the defender’s pa-
trol. The following figures show that each property that we model provides a
considerable improvement in the defender’s strategy versus a model that ignores
the property.

-3

-2

-1

0

1

S
o

lu
ti

o
n

 Q
u

a
li

ty

VI algorithm

Uniform Random

-5

-4

8 12 16

S
o

lu

Number of Targets

Figure 8: Comparison of our VI algorithm versus a uniform random strategy

First, we compare the solution quality of our VI algorithm versus a uniform
random strategy in Figure 8. The x-axis denotes the number of targets while
the y-axis shows the solution quality (defender expected utility). The purpose
of this comparison is to use the uniform random strategy as an initial bench-
mark to measure the performance and increase in solution quality that our VI
algorithm provides to the defender team. This figure shows that for varying
numbers of targets, our algorithm significantly outperforms a naive uniform
random approach.

Figure 9 shows the benefit received in our model’s ability to handle team-
work. This demonstrates the improvement in the solution quality, or defender
expected utility, that comes from the increased effectiveness of having multiple
defender agents visit the same state. More specifically, it shows the difference
in solution quality between our algorithm that generates policies that takes into

31

-0.5

0

0.5

1

1.5

2

2.5

4 6 8

S
o
lu
tio
n
 Q
u
a
lity

Number of Agents

Benefit of
multiple agents

No benefit of
multiple agents

Figure 9: Benefit of considering the effectiveness of multiple agents

account benefit to having multiple agents covering the same target-time pair,
eff(s, b) = 1 − (1 − ξ)

∑
i Isi=b , and an algorithm that generates policies that

ignores additional effectiveness, eff(s, b) = ξ ·Ib∈s (i.e., it is ξ as long as at least
one agent covers b). This algorithm that ignores additional effectiveness is still
solving individual MDPs for each defender agent (in the slave component) and
providing joint policies for the master component.

For both algorithms, when evaluating and computing the defender expected
utility, if multiple agents visit the same state, the defender receives an additional
effectiveness. In other words even for the algorithm that generates policies that
ignore multiple agents, when evaluating and computing the defender expected
utility, if there is more than one agent at a state, the defender will get an
additional effectiveness. As the number of defender agents increases, the solution
quality for when there is a benefit to having multiple agents increases at a faster
rate than when there is no benefit of multiple agents visiting the same state (no
teamwork).

Figure 10 further illustrates the expressiveness of our teamwork model. It
compares the solution quality when we consider global events versus solving
under the assumption of no global events. The x-axis denotes the number of
targets while the y-axis shows the solution quality. In the latter case, the system
solves the model under the assumption that there is no global event, and we
compute the defender expected utility if there is a 5% probability of global events
at each time step. This shows the need and improvement to incorporating and
handling global events.

Figure 11 shows the importance of taking account execution uncertainty
in the form of delays. The x-axis is the number of targets and the y-axis is
the solution quality. It compares the solution quality of our algorithm that
considers and plans for uncertainty (in the form of delays), to an algorithm
that does not take into account execution uncertainty (i.e., assumes that the

32

-3

-2

-1

0

1

S
o

lu
ti

o
n

 Q
u

a
li

ty

Handling

global event

Ignoring

-4

-3

8 12 16

S
o

lu
ti

o

Number of Targets

Ignoring

global event

Figure 10: Solution quality of handling global events versus ignoring global
events

-5

-4

-3

-2

-1

0

1

S
o

lu
ti

o
n

 Q
u

a
li

ty

Taking into

account

uncertainty

(delay)

Assuming no

-6

-5

8 12 16

S
o

lu
t

Number of Targets

Assuming no

uncertainty

(delay)

Figure 11: Comparison of solution quality taking into account the probability
of delay

policy/patrol schedule will be performed exactly as indicated and that there will
be no unforeseen events or delays). When executing the policy that does not
take into account delays, when a delay is encountered, the policy terminates with
no action. The solution quality of the algorithm that assumes no uncertainty
generates a mixed strategy for the defender, that is then analyzed with the
assumption of a 5% probability of delay. This figure reinforces the usefulness
and value to handling execution uncertainty with multiple coordinated defender
agents.

33

0

200

400

600

800

1000

1200

1400

2 4 5 10 15 20 25 30 35

R
u

n
ti

m
e

(s
ec

)
Number of Targets

MarginalRewardSlave

MPS

JESP

DICEPS

Figure 12: Comparison of various Dec-MDP solvers

5.5 Comparison with other Dec-MDP solvers

In Figure 12 we compare the runtime of the VI-based slave for one iteration
(no column generation) with other algorithms for Dec-MDPs such as MPS [14],
JESP [36] and DICEPS [39]—this is the only figure in this section that focuses
only on the slave and not on the master-slave algorithm in full.2 The x-axis
shows the number of targets and the y-axis is the execution time (seconds). We
are thankful for the advances in Dec-MDP algorithms and are in debt to the
multi-agent planning under uncertainty community for important research that
we utilize in our algorithm. There is new fertile ground for new research that
exploits deeper insights from MPS along with demonstrating the importance
towards fast heuristic algorithms to solve Dec-MDPs.

This figure shows that JESP and DICEPS run out of memory for more than
two targets, while MPS runs out of memory for more than four targets. For
a single iteration of the slave, MPS takes over six minutes with four targets,
whereas our algorithm takes less than 10 seconds. This suggests that security
games can benefit from a new family of fast approximate Dec-MDP algorithms,
such as our VI-based slave, that provides a new direction for further Dec-MDP
research.

5.6 Evaluating Runtime Improvements

This section begins with a comparison among all the runtime heuristics pre-
sented in Section 4. In Section 5.6.1, we show the increased performance when
the slave component is modified to place a limit on the number of agents at
each state. Then in Section 5.6.2 we further explore the impact of the repeated
iterative slave.

The first two figures, Figure 13 and 14 compare the runtime and solution
quality across the multiple heuristics as described in Section 4. In both figures,
the x-axis is the number of targets while the y-axis is the runtime in minutes
for Figure 13 and the solution quality in Figure 14. Focusing on Figure 13,
the heuristics that provide the fastest runtime are: Append + Cutoff, Append

2We would like to thank Jilles Dibangoye for providing the MPS algorithm and Matthijs
Spaan for providing the MADP toolbox (for JESP and DICEPS).

34

6

8

10

12

14

16

R
u

n
ti

m
e

(m
in

)

Cold Start

Append

Append + Cutoff

Append + Cutoff + Ordered

0

2

4

5 10 15

Number of Targets

Max 3 joint resources + Append

+ Cutoff + Ordered

Repeated Iterative Slave +

Append + Cutoff + Ordered

Figure 13: Runtime comparison of heuristics

0

0.5

1

1.5

S
o
lu

ti
o

n
Q

u
a
li

ty Cold Start

Append

Append + Cutoff

Append + Cutoff + Ordered

Max 3 joint resources +

-1

-0.5

5 10 15

S
o
lu

ti
o

Number of Targets

Max 3 joint resources +

Append + Cutoff + Ordered
Repeated Iterative Slave +

Append + Cutoff + Ordered

Figure 14: Solution quality comparison of heuristics

+ Cutoff + Ordered, and Max 3 joint agents + Append + Cutoff + Ordered.
Both Cold Start and Append take the longest time to run.

When comparing the solution quality, in Figure 14, all the heuristics compute
approximately the same solution quality or defender expected utility except for
the Append + Cutoff heuristic. The rationale as to why there is a decrease
in solution quality for the Append + Cutoff heuristic is that due to the cutoff

35

function where there is a limit placed on the total number of columns generated
within a single LP, this may result in a lower defender expected utility. By
adding the Ordered heuristic, we are solving the LPs that are less attractive
to the attacker first, thereby allowing additional columns to be generated and
used by the LPs that are solved later in the algorithm to give the defender a
larger number of columns or defender pure strategies to use. These two figures
show that the Append + Cutoff + Ordered heuristic runs at least as fast as the
Cold Start, Append, and Append + Cutoff algorithms, while also computing
approximately the same solution quality (and outperforming Append + Cutoff).
Therefore, we focus on improving the Append + Cutoff + Ordered heuristic in
the following section to handle situations where there is a larger number of
defender agents.

5.6.1 Maximum agents per state in the slave

We show in this section that the Append + Cutoff + Ordered heuristic, cannot
scale up well when further increasing the number of agents. Figure 15 shows the
runtime improvements and solution quality when limiting the maximum number
of agents at a state. The “No Limit” column represents the algorithm that uses
Append + Cutoff + Ordered, but does not place a limit as to the maximum
number of agents that can visit a state (equivalent to the number of agents at
the same target-time pair). We show the solution quality and runtime when we
place a limit of 2, 3, and 4 maximum agents at a state.

Figure 15(a) shows the runtime in minutes (y-axis) as the number of agents
increases from 10 to 16 (x-axis). Even using the append, cutoff, and ordering
improvements, when there are 16 agents, the program takes over 50 minutes to
run, compared to under 20 minutes to run when we limit the maximum number
of agents at a state to 4. In Figure 15(b), the x-axis is the number of agents
and the y-axis is the solution quality. This figure shows the amount of loss in
solution quality when placing limits on the number of agents that can visit the
same state with the error bars denoting a 95% confidence interval. Notice that
when we place a limit of 3 defender agents that can visit a state, when there
are a total of 10 or 12 agents, the solution quality is approximately the same as
when we do not place a limit on the number of agents that can visit the same
state. However, when the number of agents increases to 14 and 16, placing a
limit of only 3 agents results in a loss in solution quality. Overall, these figures
show the improvement in runtime for placing limits on the maximum number
of agents that can visit a state, while not significantly decreasing in solution
quality (e.g., when there is a limit of 4 agents).

5.6.2 Repeated iterative slave

Figures 16, 17, and 18 compare the performance of the single iteration versus the
repeated iterative slave algorithm as explained in Section 4.3. In all three figures,
the x-axis denotes the number of targets. In Figure 16, the y-axis is solution
quality while in Figure 17 the y-axis is the runtime in minutes. For Figure 18

36

0

10

20

30

40

50

60

10 12 14 16

R
u

n
ti

m
e

(m
in

)

Number of Agents

No Limit

Max 2 joint agents

Max 3 joint agents

Max 4 joint agents

(a) Runtime

0

1

2

3

4

5

6

10 12 14 16

S
o

lu
ti

o
n

Q
u

a
li

ty

Number of Agents

No Limit

Max 2 joint agents

Max 3 joint agents

Max 4 joint agents

(b) Solution Quality Comparison

Figure 15: Improvements in limiting maximum number of agents

-0.5

0

0.5

1

1.5

S
o

lu
ti

o
n

 Q
u

a
li

ty

Single Iteration

Slave (VI)

Repeated Iterative

Slave (VI)

-1.5

-1

5 10 15 20 25

S
o

lu

Number of Targets

Slave (VI)

Figure 16: Solution quality comparison of the single versus repeated slave

2

3

4

5

6

7

R
u

n
ti

m
e

(m
in

)

Single Iteration

Slave (VI)

Repeated Iterative

Slave (VI)

0

1

5 10 15 20 25

R
u

n
ti

m
e

Number of Targets

Slave (VI)

Figure 17: Runtime comparison of the single versus repeated slave

the y-axis is the total number of column generation iterations. As mentioned in
Section 4.3, for initial test cases, the repeated iterative slave computed a higher

37

200

300

400

500

600

T
o

ta
l

n
u

m
b

er
 o

f
it

e
ra

ti
o

n
s

Single Iteration Slave

(VI)

Repeated Iterative

Slave (VI)

0

100

5 10 15 20 25

T
o

ta
l

n
u

m
b

er

Number of Targets

Slave (VI)

Figure 18: Comparison of the number of iterations of the single versus repeated
slave

solution quality than the single iteration slave.
However, as we ran additional tests as shown in these figures, the repeated

iterative slave approach did not provide a significant increase in the solution
quality over the single iteration approach as we initially thought, nor did it
improve the overall runtime. In addition, both algorithms executed for approxi-
mately the same number of total iterations. The intuition for both the repeated
iterative slave and the single iteration slave resulting in a similar solution qual-
ity is that although the repeated iterative slave produces a better joint policy
for a single iteration than the single iteration slave, recall that the master com-
ponent computes a mixed strategy over all joint policies generated by the slave
component. Therefore, the initial joint policies computed by the repeated itera-
tive slave may be better, but over multiple iterations of column generation, the
single iteration slave will generate effective joint policies so that the resulting
defender expected utility is similar to the resulting defender expected utility for
the repeated iterative slave.

These results indicate that improving the solution quality of the joint policy
returned by the slave is by itself not sufficient to guarantee a faster run-time
or higher solution quality. In fact, the effect may be counter-productive. Thus,
whereas we have settled on a particular heuristic approach, we have shown now
in various ways that going towards a slave that computes an optimal policy fails
to scale up (Figure 12), going towards a slave that computes a potentially higher
quality policy fails to degrade runtime while not improving solution quality
(Figures 16 and 17), and going towards a slave that ignores the uncertainty
provides a very low solution quality (Figure 11). This does not preclude further
improvements to the heuristic slave presented in this paper, but suggests that
such an improvement will require a deeper exploration.

38

5.7 Robustness

There are two types of robustness issues that we explore. The first type of ro-
bustness that we study examines the impact of uncertainty in different network
structures. An example of this includes the performance of the algorithm when
the probability of delay increases. In the real world, this value will be deter-
mined based on the frequency that the actual patrols get delayed or interrupted.
In addition to determining the performance of the algorithm as the probability
of delay changes, we evaluate the impact of network structure. The rationale for
studying the robustness of the algorithm across different types of network struc-
ture, is to see if having different types of connectivity among the targets/stations
would affect the defender’s strategy and expected utility. Would having a more
sparse graph or densely connected graph influence the defender’s expected util-
ity and how would that expected utility change as we change the transition
uncertainty? We conduct experiments across different types of network struc-
tures and varying levels of transition probability in Section 5.7.1 to show that a
network structure that has more edges (e.g., complete graph) provides greater
resilience even as the probability of delay increases.

The second type of robustness that we explore addresses the impact of un-
certainty over uncertainty. In our algorithm, we assume a probability of delay,
where the defender agent may get delayed during a patrol. However, there may
be uncertainty in what this probability may actually be in the real world. We
present a different approach in generating the defender’s policy within the slave,
to provide a more robust solution to this type of uncertainty.

As described in Section 3.3, the slave generates a policy for each defender
agent using value iteration. We present a different way to solve the MDP by
using soft-max value iteration (SMVI) [58] to provide a more robust solution to
uncertainty. SMVI is similar to VI except that the soft-max function is used
instead of max while computing the value function of a state s. SMVI generates
randomized policies – i.e., randomized pure strategies – associating probability
πr(sr, ar) to each action ar at each state sr. Formally,

V (sr) = softmaxar
V (sr, ar) ≡ log

∑
ar

eV (sr,ar) (19)

πr(sr, ar) =
eV (sr,ar)

eV (sr)
(20)

SMVI was first explored for its ability to speed up convergence, as in [58].
In our experiments SMVI did not provide significant runtime improvement,
however we discovered that the randomized policy obtained from SMVI provides
robustness to uncertainty in our estimates of transition probabilities, which
is a highly useful feature since this uncertainty often arises in practice. The
intuition behind SMVI providing robustness to uncertainty stems from the fact
that the SMVI algorithm computes a policy that spreads out the probability of
choosing an action at each state, instead of choosing only one action at each
state (VI). In the presence of uncertainty, if the action that is chosen by VI

39

is no longer the best action, it will still be chosen with a probability of 1 and
therefore the updated optimal action due to uncertainty will now be chosen with
a probability of 0. With soft-max, the probability over the action to take at
each state is distributed over the set of possible actions based on their values.
Therefore when noise or uncertainty is added, the randomized policy will have
a non-zero probability of choosing the updated best action (or a close-to-best
action). For example, if there are two possible actions, a1 and a2, that give the
values 5 and 4 respectively, then the VI algorithm will generate in a policy that
chooses a1, 100% of the time. However, the SMVI algorithm will compute a
policy that chooses a1, 73.1% of the time and a2, 26.9% of the time. If noise is
added to the system that now results in a2 giving a higher value than a1, the
VI-based policy will be choosing a suboptimal action, or a1, 100% of the time
or the optimal action, a2, 0% of the time. However, the SMVI-based policy will
choose the optimal action, a2, 26.9% of the time, thereby giving the defender
a higher value. Such probability will be significant especially when there are
many close-to-optimal pure policies.

To test these level of robustness of our algorithms, we first evaluate the al-
gorithm under different graph structures. Next, we show the robustness of the
SMVI slave with uncertainty in the transition probability. Then, the perfor-
mance of both VI and SMVI slaves are studied with variations in the payoff
structure.

5.7.1 Varying graph structure

0

0.1

0.2

0.3

S
o

lu
ti

o
n

 Q
u

a
li

ty

Metro Complete Star Tree

-0.2

-0.1

5% 10% 15% 20%

S
o

lu
ti

o
n

Probability of Delay

Figure 19: Comparison of different graph structures under varying probabilities
of delay

In all the prior figures, the graph structure of the targets resemble a metro/train
system composed of connected lines. In Figure 19, we compare the impact of
different graph structures while also varying the probability of delay. The x-axis
is the probability of delay and the y-axis is the solution quality. The payoffs

40

for the targets are the same across all four graph structures. The four graph
structures that were examined are:

• Metro - a metro-based graph as described in the first paragraph of Sec-
tion 5

• Complete - a complete graph where all targets are connected to each other

• Star - a star graph where only one internal target is connected to all other
leaf targets

• Tree - a binary tree graph where each target has at most two “children”
targets

Across varying levels of probability of delay, the complete graph always gives
the highest solution quality, followed by metro graph, tree graph, and finally
star graph. The complete graph gives the highest solution quality because each
target is connected to the other, thereby having less constraints for the paths
of the patrols/policies. The star graph gives the lowest solution quality because
for the defender agent to visit two leaf targets, the agent must traverse past
the internal target, thereby not being able to visit as many targets within the
maximum patrol time. As the probability of delay increases, from 5% to 20%,
the solution quality for all graph structures decreases, however the complete
graph continues to enjoy the highest solution quality. This is because there is
increased amounts of uncertainty as to the location of the other defender agents.

From this figure and set of experiments, we show that adding more con-
nectivity in the graphs that are used for patrolling is valuable and improves
the overall solution quality. Even when there is a high amount of uncertainty,
having a highly connected graph still results in a higher performance of the
algorithm.

5.7.2 Evaluating SMVI and VI

Figure 20 shows the difference in solution quality of soft-max value iteration
(SMVI) versus value iteration (VI) in the presence of uncertainty in transition
probability. The x-axis is the number of targets and the y-axis is the solu-
tion quality. The uncertainty that is added corresponds to the probability of
the transition uncertainty being different than the initial assumed value. In
this scenario, SMVI and VI obtain Dec-MDP based pure strategies with the
assumption that the probability of delay of 5% (the value that is assumed is
the probability of delay). We evaluate how the solution quality is impacted
with a probability of delay of 10%, while the algorithms assume a delay of 5%.
In other words, we measure the change in solution quality (defender expected
utility) when the algorithms generate a defender strategy that assumes that the
probability of delay is 5% but evaluate the defender strategy if there is actu-
ally a probability of delay of 10%. This shows that without any uncertainty
SMVI performs worse than VI, but with uncertainty in the transition proba-
bility, SMVI gives a higher solution quality than VI. Thus, SMVI is a more
favorable option given uncertainty in transition probability.

41

-4

-3

-2

-1

0

1

S
o

lu
ti

o
n

 Q
u

a
li

ty SMVI

VI

SMVI w/

uncertainty

-6

-5

-4

8 12 16

S
o

lu
t

Number of Targets

uncertainty

VI w/ uncertainty

Figure 20: Comparison of SMVI and VI under uncertainty in transition proba-
bility

5.7.3 Varying payoff structure

-4

-2

0

S
o

lu
ti

o
n

 Q
u

a
li

ty

SMVI VI

SMVI with uncertainty VI with uncertainty

-8

-6

-1 -0.8 -0.6 -0.4 -0.2 0

S
o

lu
ti

o
n

Covariance

Figure 21: Comparison of SMVI and VI under uncertainty in transition proba-
bility with varying payoff structures

In Figure 20, both SMVI and VI have a significant decrease in solution qual-
ity when there is uncertainty in the transition probability. To further explore
if this phenomenon happens across different scenarios, we generated different
payoff structures by varying the covariance values of the payoffs using the co-
variance game generator of the GAMUT package [38]. We find that regardless
of the payoff structure, the SMVI-based algorithm provides a greater robustness
to uncertainty in the transition probability compared to the VI-based algorithm.

The covariance value is chosen from the range [−1.0, 0.0], which provides
the correlation between the defender’s payoff and the adversary’s payoff. The
rewards for both the defender and adversary are positive integers in the range
[1, 10] while the penalties for both the defender and adversary are negative

42

integers in the range [−10,−1]. A covariance value of -1.0 is equivalent to
a zero-sum game where if the defender’s reward is 8, then the corresponding
adversary’s penalty would be -8. A covariance value of 0 is equivalent to random
payoffs where there is no correlation between the defender’s and adversary’s
payoffs. Figure 21 shows the change in solution quality for both SMVI and VI
under uncertainty in the transition probability with different types of payoff
structures. When the covariance value is -1.0, or under a zero-sum game, note
that the solution quality of the SMVI-based algorithm drops by only 0.6 when
there is uncertainty in the transition probability, while the VI-based algorithm
drops by 1.5. In other words, the drop in solution quality of the VI-based
algorithm is 50% larger than the drop in solution quality for the SMVI-based
algorithm when there is uncertainty in the transition probability.

As the covariance value increases from -1.0 to 0, the solution quality when
there is no uncertainty in the transition probability increases at a faster rate
than the solution quality with uncertainty in the transition probability. Under
the Strong Stackelberg Equilibrium [10, 33, 31], the follower (adversary) will
choose the optimal strategy (state to attack) for the leader (defender). This
leads to a higher solution quality for the defender when there is no transition
uncertainty. When there is uncertainty added to the system, the adversary may
instead choose to attack a state that gives the defender a significantly worse
expected utility, thereby resulting in a larger drop in solution quality, as seen in
Figure 21, as the covariance value deviates from -1 (a zero-sum game). In the
more realistic cases, where the payoff structure is closer to real-world scenarios
(with the covariance being closer to -1 or the left portion of the figure), there is
less degradation in the solution quality for both SMVI- and VI-based algorithms
with SMVI continuing to provide greater robustness compared to VI.

5.8 Summary of Heuristics

This section compares all the heuristics and extensions presented in this article.
The Cold Start, Append, and Append + Cutoff heuristics are not included in
the table as they are dominated by the Append + Cutoff + Ordered heuristic in
both runtime and solution quality. Table 3 compares the four primary heuris-
tics/extensions proposed in this paper. The first heuristic, Append + Cutoff +
Ordered, works well for scenarios where the user may have a lot of targets but
less than ten defender agents. When there are a significant number of defender
agents, the user should choose to use the heuristic that places a maximum num-
ber of agents at a state (within the slave) in addition to the Append + Cutoff
+ Ordered heuristic. For scenarios where there may be a lot of uncertainty in
the parameters, the Soft-Max Value Iteration provides a more robust defender
strategy.

43

Heuristic Positives Negatives
Append + Cutoff + Scales up as number of Fails to scale as number of
Ordered targets increases agents increases
Maximum number of Scales up as number of Have to determine suitable limit
agents at a state with agents increases for agents at a state
Append + Cutoff + Ordered
Repeated iterative slave Finds a higher quality joint Overall solution quality does not

policy for the defender for significantly improve and takes
each slave iteration longer time to run

Soft-Max Value Computes robust solution Generates a solution quality worse
Iteration (SMVI) when uncertainty exists in than value iteration (VI) when there

the parameters is no uncertainty in the parameters

Table 3: Comparison of Heuristics

6 Related Work

There are two main areas of related work. The first area is on security games.
The second area is the work done on Decentralized Markov Decision Processes.
We next explore these two areas in more detail.

6.1 Security Games

As security game research is discussed earlier (see Section 5.2), we focus on
research most relevant to the problem discussed in this paper. Whereas early
work on commitment to mixed strategies in Stackelberg games is explored in
[61], it was the DOBSS algorithm [42] that used a mixed integer program and
opened the door to applications of Stackelberg games to security.

Following DOBSS, ORIGAMI and ERASER algorithms [31] were developed
with ORIGAMI providing a polynomial time solution for security games with
no scheduling constraints (an example of scheduling constraints is patrolling a
metro system where the defender is restricted in the stations that can be vis-
ited based on patrol time and metro lines). ERASER-C [31] provided a more
compact representation of the defender strategies for multiple agents (compared
to DOBSS) while also handling scheduling constraints that arise from the de-
fender’s strategies. ASPEN [26] was later developed which utilized a branch-
and-price approach to generate a subset of the defender’s pure strategies while
still computing the optimal solution for the defender allowing arbitrary schedul-
ing constraints. This significantly improved the efficiency of solving security
games with scheduling constraints. However, these algorithms do not consider
teamwork and joint activities among the defender agents.

Shieh et al. [50] introduced coordination and teamwork among defender
agents in security games via the use of joint activities for the defender. However
they do not consider execution uncertainty, such as delays, that may arise in
the defender agents’ strategy. We show in Section 5.4, Figure 11 the impor-

44

tance of accounting for execution uncertainty in the defender strategy. Jiang et
al. [30] explored handling execution uncertainty of defender patrols in security
games via the use of Markov Decision Processes, but do not consider coordina-
tion and teamwork among the multiple defender agents and instead focuses on
a single defender, or multiple independent defender agents that do not consider
the additional effectiveness that arises from having multiple agents at the same
target.

Research in security games also includes defending mobile targets [9], pa-
trolling in extensive-form infinite-horizon games [5], simulations and tools for
maritime security [29], and multiple self-interested defenders for games with a
network environment [52]. Additional techniques in solving security games have
included the use of a sequence-form double-oracle algorithm [8]

6.2 Decentralized Markov Decision Process

In this paper we turned to Dec-MDPs in generating joint policies for the de-
fender’s pure strategies. The complexity of Dec-MDPs have been shown to be
NEXP-complete [7]. One of the earliest models of Dec-MDPs addressed the
issue of scalability when there exists transition independence among the agents
and is shown to be NP-complete [6]. Transition independent Dec-MDPs have
been extended in a variety of ways. For example, one extension allows partial
observability in network structures known as network-distributed POMDP or
ND-POMDP [37]. Another extension of Dec-MDPs includes a decision theo-
retic model known as the decentralized sparse-interaction Markov decision pro-
cess (Dec-SIMDP) [34], a subclass of Dec-MDPs, where local interactions and
communications are abstracted to interaction areas and observable interactions.

Given the complexity of Dec-MDPs there has been a lot of work exploring
ways to increase the scalability of solving these types of problems. Spaan and
Melo proposed an interaction-driven Markov game, which is a model that ex-
tends Dec-MDPs and takes advantage of the situations where the interaction
between the agents are a local phenomenon, and provides a fast approximate
solution that exploits the structure [54]. Roth et al. [48] explored solving multi-
agent domains with collective observability where factored policy representa-
tions are used. Dec-MDPs have also been reformulated as a bilinear program
which allows for efficient algorithms to solve this kind of problem [43]. Diban-
goye et al. [14], present an algorithm to solve transition independent Dec-MDPs
while also providing error-bounds and fast convergence rates via the use of con-
tinuous state MDPs and piecewise linear convex functions. Additional research
has focused on solving infinite-horizon transition independent Dec-MDPs [15].

Communication among agents in a decision theoretic, decentralized environ-
ment extending Dec-MDPs has been studied by Goldman et al. [22]. The Dec-
MDP model is extended to Dec-MDP-Com model that includes the language
of communication and cost to transmit a message. The use of communication
can potentially help overcome the issues that arise from miscordination and pro-
vide a more robust solution. Another framework known as Dec-SMDP-Com [23]
for a decentralized semi-Markov decision process with direct communication has

45

been used to represent communication within multi-agent planning in stochastic
domains, where the agents operate independently between communication.

A general framework that has been used to solve multi-agent planning prob-
lems is the Expectation-Maximization (EM) framework [13], which has helped
in scaling up. In solving infinite-horizon multi-agent sequential decision mak-
ing problems, Kumar and Zilberstein, reformulated the problem to a set of
dynamic Bayes nets and use the EM algorithm to find the optimal policy of
the dynamic Bayes nets [32]. Another area of research related to sequential
decision making under uncertainty is interactive partially observable Markov
decision processes (I-POMDP) [21], where the beliefs of the agents are not
constrained just by the state space, but include the physical environment and
models of other agents. Research has focused on graphical models to represent
and solve I-POMDPs [16, 17] along with a policy iteration algorithm to solve
I-POMDPs [53].

Recent multi-agent literature for decision making under uncertainty has
started exploring the notion and impact of time [1, 35]. Amato et al. [1] ex-
tend the Dec-POMDP model to address macro-actions (actions that require
different amounts of time) in determining what macro-actions to execute and
for which agent. A case study by Messias et al. [35] applies the Generalized
Semi-Markov Decision Processes to a multi-robot scenario while demonstrating
that the modeling of asynchronous events over continuous time gives a greater
solution quality compared to discrete time models.

In this paper, we exploit the advances already provided by the Dec-MDP
community in providing a rich set of algorithms and ideas, and the algorithm
devised in this paper builds on these ideas. There are two major differences
between the work in this paper and previous work. The first major difference in
this paper is the addition of an adversarial agent that is able to respond to the
joint policy of the Dec-MDP. The adversary is able to strategically determine the
effectiveness of the defender’s strategy (which is based on the joint policies from
the Dec-MDP) that the defender must strategize against. The slave component
of our algorithm can use any Dec-MDP solver as the purpose of the slave is to
generate a joint policy for the defender agents. The contribution of this paper
stems from the column generation framework that allows for the decomposition
of the security game in the master component and the joint policy for the
defender in the slave component allowing the integration of security games and
Dec-MDPs. This decomposition brings forth a second key difference between
the work presented in this paper and previous work: our emphasis is not on
generating just one single optimal joint policy via the Dec-MDP algorithms
employed in our slave component, but a number of joint policies. This shift in
emphasis has led us to develop heuristics that allow for fast generation of good
enough policies rather than focusing on a single optimal or near-optimal policy.

The contribution this paper provides to the Dec-MDP community is a new
domain where Dec-MDP research can be used. Dec-MDPs can be used in game
theoretic problems to compute defender strategies under uncertainty. This dif-
fers from prior Dec-MDP research areas as this opens up a need for Dec-MDP
algorithms that focus on rapid computation of policies rather than a single op-

46

timal or near-optimal policy.

7 Conclusion

The key contribution of this paper is opening up a fruitful new area of research
at the intersection of security games and multi-agent teamwork. We present a
novel game theoretic model that for the first time addresses teamwork under
uncertainty for security games. To solve this model, we present an algorithm
that leverages column generation and iterative Dec-MDPs to generate defender
strategies under uncertainty. Additionally, we present heuristics to improve the
runtime and demonstrate the robustness of using randomized pure strategies.

A future direction we would like to inquire into is to look at various team
types that allow heterogeneous team members (e.g., three boats, two boats and
a helicopter, one boat and two helicopters) in security games, where there are
costs associated with each defender agent (e.g., one boat has the same cost
as two helicopters). These heterogeneous agents will also have different levels
of effectiveness based on which agents are conducting a joint activity/working
together. For example, having a helicopter and a boat visit the same target
will provide increased effectiveness compared to having two helicopters or two
boats visiting that target. The challenge is to find the optimal team composition
given a fixed cost with the additional complexity of varying levels of effectiveness
among heterogeneous defender agents. Another direction of future work could be
to allow for a richer set of defender policies allowing for observation uncertainty
(and hence we would need to bring in Dec-POMDPs for coordination), requiring
us to handle the significant additional complexity of Dec-POMDPs.

8 Acknowledgments

We are grateful to the reviewers of this article for their valuable comments and
suggestions. We thank Samantha Flores and Albert Venegas for their contribu-
tion and help in running experiments and generating figures. This research was
supported by the United States Department of Homeland Security through the
National Center for Risk and Economic Analysis of Terrorism Events (CRE-
ATE) under award number 2010-ST-061-RE0001 and MURI grant W911NF-
11-1-0332.

9 Author Biographies

Eric Shieh is a research scientist at the Lockheed Martin Advanced Technology
Laboratories. His research focuses on multiagent systems and game theory in
real world applications. He received his Ph.D. at the University of Southern Cal-
ifornia in computer science. He obtained his M.S. in computer science from the
University of Southern California and B.S. in computer science from Carnegie
Mellon University.

47

Albert Xin Jiang is an assistant professor in the Department of Computer
Science at Trinity University. He received his PhD from the Department of
Computer Science at the University of British Columbia, and was a postdoc-
toral research associate in the TEAMCORE research group at the Department
of Computer Science at the University of Southern California. Much of his
research is addressing computational problems arising in game theory, includ-
ing the efficient computation of solution concepts such as Nash equilibrium,
Stackelberg equilibrium and correlated equilibrium, as well as applications of
game-theoretic computation to real-world domains such as large-scale infras-
tructure security and electronic commerce. He has published over 50 articles in
refereed international conferences and journals, and won the best student paper
award at ACM-EC 2011 and was finalist for the best paper award at AAMAS
2013. He received the Canadian Artificial Intelligence Association (CAIAC)
Doctoral Dissertation Award in 2012 and was runner-up for the IFAAMAS Vic-
tor Lesser Distinguished Dissertation Award. He has led research projects on
applying game theory to security that have been successfully deployed at the
Los Angeles Metro and the Staten Island Ferry.

Amulya Yadav is a third year Ph.D. student in the Computer Science De-
partment at the University of Southern California (USC), where he works in the
Teamcore Research Group, while being advised by Prof. Milind Tambe. Before
coming to USC, he worked as a Software Development Engineer at Amazon.com
after graduating with a CS B. Tech from Indian Institute of Technology Patna.

Pradeep Varakantham received his Ph.D. degree in Computer Science from
the University of Southern California and he was a post doctoral fellow at
Carnegie Mellon University. Currently, he serves as assistant professor at Singa-
pore Management University. His research is focussed on developing agent and
multi-agent systems for urban environments. He is an author or co-author of
more than 50 international publications at top tier journals (JAAMAS, JAIR)
and conferences (AAAI, IJCAI, NIPS, UAI, AAMAS, ICAPS) in AI. He was
nominated for best senior program committee member at AAMAS’13 and one
of his papers was nominated for best student paper at AAMAS’09. He has
organised and co-chaired multiple workshops on planning under uncertainty,
multi-agent coordination and game theory for security. He serves on the pro-
gram committee of most top tier conferences (AAMAS, AAAI, ICAPS, IJCAI)
and reviews for most top tier journals (JAIR, AIJ, JAAMAS) in Artficial Intel-
ligence.

Milind Tambe is Helen N. and Emmett H. Jones Professor in Engineering
at the University of Southern California(USC). He is a fellow of AAAI (Asso-
ciation for Advancement of Artificial Intelligence) and ACM (Association for
Computing Machinery), as well as recipient of the ACM/SIGART Autonomous
Agents Research Award, Christopher Columbus Fellowship Foundation Home-
land security award, the INFORMS Wagner prize for excellence in Operations
Research practice, the Rist Prize of the Military Operations Research Soci-
ety, IBM Faculty Award, Okawa foundation faculty research award, RoboCup
scientific challenge award, Orange County Engineering Council Outstanding
Project Achievement Award, USC Associates award for creativity in research

48

and USC Viterbi use-inspired research award. Prof. Tambe has contributed sev-
eral foundational papers in agents and multiagent systems; this includes areas of
multiagent teamwork, distributed constraint optimization (DCOP) and security
games. For this research, he has received the ”influential paper award” from the
International Foundation for Agents and Multiagent Systems(IFAAMAS), as
well as with his research group, multiple best paper awards at conferences such
as the International Conference on Autonomous Agents and Multiagent Sys-
tems and International Conference on Intelligent Virtual Agents. In addition,
the real-world deployments of the ”security games” framework and algorithms
pioneered by Prof. Tambe and his research group has led them to receive the
US Coast Guard Meritorious Team Commendation from the Commandant, US
Coast Guard First District’s Operational Excellence Award, Certificate of Ap-
preciation from the US Federal Air Marshals Service and special commendation
given by the Los Angeles World Airports police from the city of Los Angeles.
For his teaching and service, Prof. Tambe has received the USC Steven B. Sam-
ple Teaching and Mentoring award and the ACM recognition of service award.
Recently, he co-founded a company based on his research, ARMORWAY, where
he serves as the chief of research. Prof. Tambe received his Ph.D. from the
School of Computer Science at Carnegie Mellon University.

References

[1] Amato, C., Konidaris, G.D., Kaelbling, L.P.: Planning with macro-actions
in decentralized pomdps. In: Proceedings of the 2014 international con-
ference on Autonomous agents and multi-agent systems, pp. 1273–1280.
International Foundation for Autonomous Agents and Multiagent Systems
(2014)

[2] Amato, C., Oliehoek, F.A.: Scalable planning and learning for multiagent
pomdps. Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15) (to appear) (2015)

[3] An, B., Brown, M., Vorobeychik, Y., Tambe, M.: Security games with
surveillance cost and optimal timing of attack execution. In: Proceedings of
the 2013 international conference on Autonomous agents and multi-agent
systems, pp. 223–230. International Foundation for Autonomous Agents
and Multiagent Systems (2013)

[4] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.:
Branch and price: Column generation for solving huge integer programs.
In: Operations Research (1994)

[5] Basilico, N., Gatti, N., Amigoni, F.: Patrolling security games: Definition
and algorithms for solving large instances with single patroller and single
intruder. Artificial Intelligence 184-185, 78–123 (2012)

49

[6] Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition
independent decentralized markov decision processes. In: JAIR, vol. 22,
pp. 423–455 (2004)

[7] Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complex-
ity of decentralized control of markov decision processes. Mathematics of
operations research 27(4), 819–840 (2002)

[8] Bosansky, B., Kiekintveld, C., Lisy, V., Cermak, J., Pechoucek, M.:
Double-oracle algorithm for computing an exact nash equilibrium in zero-
sum extensive-form games. In: Proceedings of the 2013 International Con-
ference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pp.
335–342. International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2013). URL http://dl.acm.org/citation.cfm?

id=2484920.2484975

[9] Bošanskỳ, B., Lisỳ, V., Jakob, M., Pěchouček, M.: Computing time-
dependent policies for patrolling games with mobile targets. In: AAMAS
(2011)

[10] Breton, M., Alj, A., Haurie, A.: Sequential stackelberg equilibria in two-
person games. Journal of Optimization Theory and Applications 59(1),
71–97 (1988)

[11] Carter, C.J.: Congressman: Thwarted terror plot targeted train
from Canada to U.S. (2013). Retrieved Oct 3, 2013 from
http://www.cnn.com/2013/04/22/world/americas/canada-terror-plot-
thwarted/index.html

[12] Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit
to. In: ACM EC-06, pp. 82–90 (2006)

[13] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Soci-
ety. Series B (Methodological) pp. 1–38 (1977)

[14] Dibangoye, J.S., Amato, C., Doniec, A.: Scaling up decentralized MDPs
through heuristic search. In: UAI, pp. 217–226 (2012)

[15] Dibangoye, J.S., Amato, C., Doniec, A., Charpillet, F.: Producing efficient
error-bounded solutions for transition independent decentralized mdps. In:
Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, pp. 539–546. International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC (2013)

[16] Doshi, P., Zeng, Y., Chen, Q.: Graphical models for online solutions to in-
teractive pomdps. In: Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, p. 217. ACM (2007)

50

[17] Doshi, P., Zeng, Y., Chen, Q.: Graphical models for interactive pomdps:
representations and solutions. Autonomous Agents and Multi-Agent Sys-
tems 18(3), 376–416 (2009)

[18] Fave, F.M.D., Shieh, E., Jain, M., Jiang, A.X., Rosoff, H., Tambe, M.,
Sullivan, J.P.: Efficient solutions for joint activity based security games:
Fast algorithms, results and a field experiment on a transit system. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS)(to appear)
(2014)

[19] Gan, J., An, B., Vorobeychik, Y.: Security games with protection external-
ities. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

[20] Gatti, N.: Game theoretical insights in strategic patrolling: Model and
algorithm in normal-form. In: ECAI-08, pp. 403–407 (2008)

[21] Gmytrasiewicz, P.J., Doshi, P.: A framework for sequential planning in
multi-agent settings. Journal of Artificial Intelligence Research (JAIR) 24,
49–79 (2005)

[22] Goldman, C.V., Allen, M., Zilberstein, S.: Learning to communicate in a
decentralized environment. Autonomous Agents and Multi-Agent Systems
15(1), 47–90 (2007)

[23] Goldman, C.V., Zilberstein, S.: Communication-based decomposition
mechanisms for decentralized mdps. Journal of Artificial Intelligence Re-
search (JAIR) 32, 169–202 (2008)

[24] Haskell, W.B., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, L.E.:
Robust protection of fisheries with compass. In: Conference on Innovative
Applications of Artificial Intelligence (IAAI) (2014)

[25] INFORMS: Terrorism risk greatest for subway/rail commuters, says
MIT paper at INFORMS conference (2012). Retrieved Oct 3, 2013
from https://www.informs.org/About-INFORMS/News-Room/Press-
Releases/Terrorism-Rail-Risk

[26] Jain, M., Kardes, E., Kiekintveld, C., Ordóñez, F., Tambe, M.: Secu-
rity Games with Arbitrary Schedules: A Branch and Price Approach. In:
AAAI, pp. 792–797 (2010)

[27] Jain, M., Korzhyk, D., Vanek, O., Conitzer, V., Pechoucek, M., Tambe,
M.: A double oracle algorithm for zero-sum security games on graphs. In:
AAMAS, vol. 1, pp. 327–334 (2011)

[28] Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., Ordóñez,
F.: Software assistants for randomized patrol planning for the lax airport
police and the federal air marshal service. Interfaces 40(4), 267–290 (2010)

51

[29] Jakob, M., Vaněk, O., Hrstka, O., Pěchouček, M.: Agents vs. pirates:
multi-agent simulation and optimization to fight maritime piracy. In: AA-
MAS, vol. 1, pp. 37–44 (2012)

[30] Jiang, A.X., Yin, Z., Zhang, C., Tambe, M., Kraus, S.: Game-theoretic
randomization for security patrolling with dynamic execution uncertainty.
In: AAMAS, vol. 1, pp. 207–214 (2013)

[31] Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Tambe, M., Ordóñez, F.: Com-
puting optimal randomized resource allocations for massive security games.
In: AAMAS, vol. 1, pp. 689–696 (2009)

[32] Kumar, A., Zilberstein, S.: Anytime planning for decentralized pomdps us-
ing expectation maximization. Proceedings of the Twenty-Sixth Conference
on Uncertainty in Artificial Intelligence pp. 294–301 (2010)

[33] Leitmann, G.: On generalized stackelberg strategies. Journal of Optimiza-
tion Theory and Applications 26(4), 637–643 (1978)

[34] Melo, F.S., Veloso, M.: Decentralized MDPs with sparse interactions. Ar-
tificial Intelligence 175(11), 1757–1789 (2011)

[35] Messias, J.V., Spaan, M.T., Lima, P.U.: Gsmdps for multi-robot sequential
decision-making. In: AAAI (2013)

[36] Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming de-
centralized POMDPs: Towards efficient policy computation for multiagent
settings. In: IJCAI, vol. 1, pp. 705–711 (2003)

[37] Nair, R., Varakantham, P., Tambe, M., Yokoo, M.: Networked dis-
tributed POMDPs: A synthesis of distributed constraint optimization and
POMDPs. In: AAAI, vol. 1, pp. 133–139 (2005)

[38] Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the
gamut: A comprehensive approach to evaluating game-theoretic algo-
rithms. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pp. 880–887. IEEE
Computer Society (2004)

[39] Oliehoek, F.A., Kooi, J.F., Vlassis, N.: The cross-entropy method for policy
search in decentralized POMDPs. Informatica 32, 341–357 (2008)

[40] Oliehoek, F.A., Spaan, M.T., Amato, C., Whiteson, S.: Incremental clus-
tering and expansion for faster optimal planning in dec-pomdps. Journal
of Artificial Intelligence Research pp. 449–509 (2013)

[41] Oliehoek, F.A., Spaan, M.T., Witwicki, S.J.: Influence-optimistic local val-
ues for multiagent planning. Proceedings of the Fourteenth International
Conference on Autonomous Agents and Multiagent Systems. Extended Ab-
stract. (To appear) (2015)

52

[42] Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordóñez, F., Kraus,
S.: Playing games with security: An efficient exact algorithm for Bayesian
Stackelberg games. In: AAMAS-08, pp. 895–902 (2008)

[43] Petrik, M., Zilberstein, S.: A bilinear programming approach for multiagent
planning. JAIR 35(1), 235–274 (2009)

[44] Pita, J., Jain, M., Ordonez, F., Tambe, M., Kraus, S.: Robust solutions
to stackelberg games: Addressing bounded rationality and limited observa-
tions in human cognition. Artificial Intelligence Journal, 174(15):1142-1171
(2010)

[45] Pita, J., Jain, M., Western, C., Portway, C., Tambe, M., Ordonez, F.,
Kraus, S., Parachuri, P.: Deployed ARMOR protection: The application
of a game-theoretic model for security at the Los Angeles International
Airport. In: AAMAS, vol. 1, pp. 125–132 (2008)

[46] Qian, Y., Haskell, W.B., Jiang, A.X., Tambe, M.: Online planning for
optimal protector strategies in resource conservation games. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2014), vol. 1, pp. 733–740 (2014)

[47] Reuters: Al Qaeda planning attacks on high-speed trains
in Europe: newspaper (2013). Retrieved Oct 3, 2013 from
http://www.reuters.com/article/2013/08/19/us-germany-security-qaeda-
idUSBRE97I0IN20130819

[48] Roth, M., Simmons, R., Veloso, M.: Exploiting factored representations
for decentralized execution in multiagent teams. In: Proceedings of the
6th international joint conference on Autonomous agents and multiagent
systems, p. 72. ACM (2007)

[49] Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule,
B., Meyer, G.: PROTECT: A deployed game theoretic system to protect
the ports of the united states. In: AAMAS, vol. 1, pp. 13–20 (2012)

[50] Shieh, E., Jain, M., Jiang, A.X., Tambe, M.: Efficiently solving joint ac-
tivity based security games. In: IJCAI, vol. 1, pp. 346–352 (2013)

[51] Shieh, E., Jiang, A.X., Yadav, A., Varakantham, P., Tambe, M.: Unleash-
ing dec-mdps in security games: Enabling effective defender teamwork. In:
European Conference on Artificial Intelligence (ECAI), vol. 1, pp. 819–824
(2014)

[52] Smith, A., Vorobeychik, Y., Letchford, J., Livermore, C.: Multi-defender
security games on networks. In: Workshop on Pricing and Incentives in
Networks and Systems (2013)

53

[53] Sonu, E., Doshi, P.: Generalized and bounded policy iteration for finitely-
nested interactive pomdps: scaling up. In: AAMAS, vol. 2, pp. 1039–1048
(2012)

[54] Spaan, M.T., Melo, F.S.: Interaction-driven markov games for decentral-
ized multiagent planning under uncertainty. In: AAMAS, vol. 1, pp. 525–
532 (2008)

[55] Spaan, M.T., Oliehoek, F.A.: The multiagent decision process toolbox:
Software for decision-theoretic planning in multiagent-systems. In: Pro-
ceedings of the Joint Conference on Autonomous Agents and Multiagent
Systems (2008)

[56] Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press (2011)

[57] Vaněk, O., Jakob, M., Lisý, V., Bošanský, B., Pěchouček, M.: Iterative
game-theoretic route selection for hostile area transit and patrolling. In:
The 10th International Conference on Autonomous Agents and Multiagent
Systems, vol. 3, pp. 1273–1274 (2011)

[58] Varakantham, P., Ahmed, A., Cheng, S.F.: Decision support for assorted
populations in uncertain and congested environments. In submission to
JAIR (2013)

[59] Varakantham, P., Kwak, J., Taylor, M., Marecki, J., Scerri, P., Tambe, M.:
Exploiting coordination locales in distributed POMDPs via social model
shaping. In: ICAPS, pp. 313–320 (2009)

[60] Varakantham, P., Lau, H.C., Yuan, Z.: Scalable randomized patrolling for
securing rapid transit networks. In: IAAI, pp. 1563–1568 (2013)

[61] Von Stengel, B., Zamir, S.: Leadership with commitment to mixed strate-
gies. CDAM Research Report LSE-CDAM-2004-01 (2004)

[62] Wu, F., Zilberstein, S., Jennings, N.R.: Monte-carlo expectation maxi-
mization for decentralized pomdps. In: Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, pp. 397–403. AAAI
Press (2013)

[63] Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation
for wildlife protection against illegal poachers. In: International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), vol. 1, pp. 453–
460 (2014)

[64] Yang, R., Tambe, M., Ordonez, F.: Computing optimal strategy against
quantal response in security games. In: AAMAS, vol. 2, pp. 847–854 (2012)

54

[65] Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-
Brown, K., Sandholm, T., Sullivan, J.: Trusts: Scheduling randomized
patrols for fare inspection in transit systems. In: Conference on Innovative
Applications of Artificial Intelligence (IAAI) (2012)

[66] Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., Tambe, M.: Stack-
elberg vs. Nash in Security Games: Interchangeability, Equivalence, and
Uniqueness. In: AAMAS, vol. 1, pp. 1139–1146 (2010)

55

