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ABSTRACT
Multi-agent planning is a well-studied problem with appli-
cations in various areas. Due to computational constraints,
existing research typically focuses either on unstructured do-
mains with many agents, where we are content with heuristic
solutions, or domains with small numbers of agents or spe-
cial structure, where we can find provably near-optimal so-
lutions. In contrast, here we focus on provably near-optimal
solutions in domains with many agents, by exploiting influ-
ence limits. To that end, we make two key contributions: (a)
an algorithm, based on Lagrangian relaxation and random-
ized rounding, for solving multi-agent planning problems
represented as large mixed-integer programs; (b) a proof of
convergence of our algorithm to a near-optimal solution.
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1. INTRODUCTION
Rapid progress in ubiquitous computing has enabled real-

time delivery of contextualized information via devices (such
as mobile phones and car navigation devices) over wide ar-
eas. As a result, a new kind of information service for mass
user support is beginning to emerge. Examples include ser-
vices that coordinate movements of first responders during
a disaster rescue [1], movements of taxis in a fleet [3] and
movements of visitors in leisure destinations (such as theme
parks or world expositions). In these services, users are
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typically represented by computational agents that perform
real-time planning and adaptation. Designing coordination
mechanisms that can govern these services in ways that meet
global criteria such as fairness, revenue maximization, sta-
bility/convergence, and efficient resource utilization is a re-
search challenge. Motivated by this challenge, we present an
algorithm, based on Lagrangian relaxation and randomized
rounding, for large-scale multi-agent planning problems. We
prove convergence to an optimal solution as the number of
agents increases; in fact, the quality of the solution actually
improves as the problem size increases.

2. ILLUSTRATIVE DOMAIN
We motivate our work with a theme park crowd

management problem, represented with a tuple
〈A,P, {A(pi)}n1 , {dai}k1 , {Ui}n1 , H〉, where A = {ai}k1 is
the set of attractions in the theme park; P = {pi}n1 is the
set of patrons in the theme park; A(pi) ⊆ A is the subset of
attractions that patron pi prefers to visit; dai is the service
rate of attraction ai, that is, the number of patrons it can
serve per time step; Ui is the utility function of patron pi;
and H is the time horizon. The goal is to find the route πi
for each patron pi such that the sum of utilities Ui(πi) over
all patrons is maximized.

3. MULTI-AGENT PLANNING PROBLEM
We represent the multi-agent planning problems as a

large-scale mixed-integer program with special structure.
This representation is very general, subsuming for exam-
ple Markov decision processes, network flows, and graphical
models such as influence diagrams, via reductions based on
sampling scenarios [2]. Our chief assumptions are factored
structure, the existence of local planning subroutines, and
an influence limit for each agent. The efficiency of our al-
gorithm will depend on the factored structure and the num-
ber and difficulty of local planning problems; our solution
quality bounds will improve with more agents and tighter
influence limits.

In more detail, we suppose that agent i’s plan is rep-
resented by a set of decision variables xi ∈ Rni , subject
to local constraints Aixi = bi, xi ∈ Xi and local costs
c>i xi. The agents interact through coupling constraints
min fj(yj), where yj =

∑n
i=1 `

>
ijxi is resource consumption

and fj : R → R ∪ {∞} is a closed proper convex function
representing resource cost. The global planning problem is



Inputs: ci, Ci, `ij , fj , η, T, εj , αmax
j , αmin

j Outputs: x̄i, λ̄j

λj0 ← 0 j = 1 . . .m

for t← 1, 2, . . . , T

xit ← arg maxx[c>i x−
∑m
j=1 λj`

>
ijx] i = 1 . . . n

s.t. x ∈ Xi, Aix = bi

yj ← εj +
∑n
i=1 `

>
ijxit j = 1 . . .m

zj ← arg maxz[λjz − fj(z)] j = 1 . . .m

λjt ← λj,t−1 + η√
t
(yj − zj) j = 1 . . .m

λjt ← max(αmin
j ,min(αmax

j , λjt)) j = 1 . . .m

x̄i ← 1
t

∑t
k=1 xik i = 1 . . . n

λ̄j ← 1
t

∑t
k=1 λjk j = 1 . . .m

round x̄i to xi as described in text i = 1 . . .m

Figure 1: SLR Pseudocode

therefore:

max
x

Vp(x) s.t. Aixi = bi, xi ∈ Xi ∀i (1)

Vp(x) =

n∑
i=1

c>i xi −
m∑
j=1

fj

(
n∑
i=1

`>ijxi

)
This problem is NP-hard and inapproximable; but, we can
take advantage of a limit on the largest influence of any
agent to solve it efficiently. More formally, we assume, first,
that no agent controls a disproportionate share of the utility
or resources: there is a constant U > 0 such that

−U
n
|V ∗p | ≤ c>i xi ≤

U

n
|V ∗p | (2)

−U
n
|y∗j | ≤ `>ijxi ≤

U

n
|y∗j | (3)

for all i, j, and xi ∈ Xi. Here V ∗p is the optimal value
in Eq. 1 and y∗j is the usage of resource j in some optimal
solution. Second, we suppose that the optimization prob-
lem as a whole is well conditioned: suppose we redefine the
consumption cost in Eq. 1 to be

fj
(
εj +

∑n
i=1 `

>
ijxi

)
(4)

for some small εj ≥ 0. Let V ∗ε be the optimal value of Eq. 1
in this case. Then, we assume that there exists an εmax > 0,
a κ > 0, and a ∆ > 0 such that, whenever 0 ≤ εj ≤ εmax,

V ∗ε ≥ V ∗p − κ
∑
j εj −∆/n (5)

4. SLR ALGORITHM
Fig. 1 shows the Subgradient Lagrangian Relaxation (SLR)

algorithm. Inputs are the problem parameters ci, Ai, bi, `ij ,
fj (as in Eq. 1); learning rate η > 0 and number of iterations
T ; bounds αmax

j and αmin
j on the slope of fj ; and target

margins εj . Outputs are expected plans x̄i for each agent,
as well as prices λ̄j for each resource; the latter can be used
to check convergence.

We cannot directly execute the final aggregated policy x̄:
since the domains Xi are typically non-convex, averaging
feasible solutions does not typically yield a feasible solution.
To remedy this problem, we use randomized rounding: each
agent independently picks a random locally-feasible policy
xi according to a distribution which makes E(xi) = x̄i. (One
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Figure 2: Experimental Results of SLR

such distribution is the uniform distribution over xit for t =
1 . . . T .) To ensure feasibility, we set the margin εj to trade
off total predicted utility against the possibility of violating
resource constraints.

The following theorem shows that we can set the parame-
ters of SLR to guarantee that rounding yields a high-quality
plan with high probability, and that, with these parameters,
the expected runtime of SLR will be a low-order polyno-
mial in the problem size. In particular, we can pick any
desired failure probability, say δ = 0.01, and a decreasing
convergence tolerance, say γ = 1/

√
n. Then, we can set

ε = Θ( ln 1/δ√
n

), η = Θ(1), and T = Θ(γ−2) = Θ(n) to achieve

low error, polynomial runtime, and high success probability.
(And, we can make the success probability arbitrarily close
to 1 by repeating the rounding step.)

Theorem 1. Suppose influence limits are guaranteed by
Eqs. 2–5. Fix ε ≤ εmax, set εj = ε for all j, and run SLR
(Fig. 1) to some tolerance γ. Let each agent randomize in-
dependently with E(xi) = x̄i. Set

δ = e−nε
2/2U2|V ∗

p |
2

+me−nε
2/2U2|y∗j |

2

Then, with probability at least 1− δ,

Vp(x) ≥ V ∗p −∆/n− (κm+ 1)ε− γ

5. EXPERIMENTAL RESULTS
For our experiments, using the notation from above, we

set |A| = 10, δai = 5 for all attractions, n = 1500, k = 10,
and vary H from 5 to 10. Fig. 2 shows a set of representa-
tive results, where we plot the primal and dual values (from
Eq. 1 and its dual) across iterations. The primal and dual
values increase with H, since higher H lets some patrons
visit attractions that they would otherwise have skipped.
Convergence is fast for all problems, and the duality gap is
small, indicating that we have reached a near-optimal solu-
tion in this large-scale problem instance.
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