
Delayed Observation Planning in Partially Observable
Domains

(Extended Abstract)
Pradeep Varakantham†, Janusz Marecki‡

†School of Information Systems, Singapore Management University, Singapore
‡IBM Watson Research Lab, New York, NY

†pradeepv@smu.edu.sg ‡marecki@us.ibm.com

ABSTRACT
Traditional models for planning under uncertainty such as
Markov Decision Processes (MDPs) or Partially Observable
MDPs (POMDPs) assume that the observations about the
results of agent actions are instantly available to the agent.
In so doing, they are no longer applicable to domains where
observations are received with delays caused by temporary
unavailability of information (e.g. delayed response of the
market to a new product). To that end, we make the follow-
ing key contributions towards solving Delayed observation
POMDPs (D-POMDPs): (i) We first provide an parame-
terized approximate algorithm for solving D-POMDPs effi-
ciently, with desired accuracy; and (ii) We then propose a
policy execution technique that adjusts the policy at run-
time to account for the actual realization of observations.
We then show the performance of our techniques on POMDP
benchmark problems with delayed observations where ex-
plicit modeling of delayed observations leads to solutions of
superior quality.

Categories and Subject Descriptors
G [3]: Markov Processes

General Terms
Algorithms

Keywords
Partially Observable Markov Decision Process, Delayed Ob-
servations

1. INTRODUCTION
Recent years have seen a rise of interest in autonomous

agents deployed in domains ranging from automated trad-
ing, traffic control, disaster rescue and space exploration.
Simultaneously, research in devising control mechanisms for
these agents has progressed significantly. Partially Observ-
able Markov Decision Processes (POMDPs) have received
considerable attention, due to their ability to capture the

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

uncertainty of the outcomes of agent actions and the un-
certainty in the agent observations of the environment. Re-
search in POMDPs has allowed the POMDP solvers [5] to
scale to domains with thousands of states, actions and ob-
servations while providing guarantees on solution quality.

Unfortunately, the problem of decision making with de-
layed observations has received scant attention in POMDP
research. Delayed observation reasoning is particularly rele-
vant in providing real time decisions based on traffic conges-
tion/incident information [1] or in making decisions on new
products before receiving the market response to a new prod-
uct. There are always delays in receiving such information
due to data fusion, computation, transmission and physical
limitations of the underlying process. Existing research [1,
3] has provided (a) models to represent observation delay
in the context of Markov Decision Problems; (b) Theoreti-
cal properties of the sufficient statistic and value function;
and (c) optimal approaches for solving MDPs with fixed ob-
servation delays;. While those models and algorithms are
extended to POMDPs, the optimal nature of the algorithms
and other restrictions (such as fixed observation delays) de-
creases their scalability and applicability.

In this paper we remedy the shortcomings of the previous
work for handling delayed observations, in three key contri-
butions: (i) We provide a parameterized approximate algo-
rithm for solving D-POMDPs with a desired accuracy; (ii)
We propose a policy execution technique that adjusts the
agent policy corresponding to delayed observations at run-
time for improved performance; and (iii) Finally, we provide
error bounds, theoretical properties and complexity results
for the proposed approaches. In the experimental results, we
illustrate that our planning and execution algorithms lead to
improved performance in domains with observation delays.

2. MODEL: D-POMDP
We now introduce D-POMDP model to allow for rich

modeling of delayed observations, extending the models pro-
posed in [1, 3]. A D-POMDP is a tuple 〈S,A,Ω, P,R,O,X〉
whose only difference from a POMDP is X—a set of ran-
dom variables Xs,a(k) that specify the probability that an
observation is delayed by k decision epochs, when action a
is executed in state s. An example of Xs,a would be the dis-
crete distribution (0.5,0.3,0.2), where 0.5 is the probability
of no delay, 0.3 is the probability of one time step delay and
0.2 is the probability of two time step delay in receiving the
observation in state s on executing action a. D-POMDPs
extend POMDPs by modeling the observations that are de-



layed and by allowing for actions to be executed prior to
receiving these delayed observations. In essence, if the agent
receives an observation immediately after executing an ac-
tion, D-POMDPs behave exactly as POMDPs. However,
if an observation does not reach the agent immediately, D-
POMDPs behave differently from POMDPs. Rather than
having to wait for an observation to arrive, a D-POMDP
agent can resume the execution of its policy prior to re-
ceiving the observation. In short, a D-POMDP agent must
balance the trade off of acting prematurely (without the in-
formation provided by the observations that have not yet
arrived) versus executing stop gap (waiting) actions.

Our introduction of D-POMDPs is accompanied in the
next section by a D-POMDP example for a classical
“Tiger Domain” [4] wherein S = {sTigerLeft, sTigerRight},
A = {aOpenLeft, aOpenRight, aListen}, O = {oTigerLeft,
oTigerRight} and the observations oTigerLeft, oTigerRight re-
sulting from the execution of action aListen arrive with a
delay sampled from a discrete probability distribution X .

3. SOLVING D-POMDPS
In this paper, we are interested in providing quality

bounded and efficient solutions for D-POMDPs. Our ap-
proach to solving a D-POMDP consists of two steps: (a)
converting the D-POMDP to an approximately equivalent
POMDP; and (b) employing an existing POMDP solver
to solve the obtained POMDP. The key step is (a) and
we provide a parameterized approach for making the con-
version from D-POMDP to its approximately equivalent
POMDP. The level of approximation is governed by an in-
put parameter, D, which represents the number of delay
steps considered in the planning process1 . The extended
POMDP obtained from the D-POMDP is defined as the tu-
ple 〈S,A,Ω, P ,R,O〉 where S is the set of extended states
and Ω is a set of extended observations that the agent re-
ceives upon executing its actions in extended states. P ,R,O
are the extended transition, reward and observations func-
tions.

3.1 Online Policy Modification
The second key contribution of this paper is a technique

for modifying the policy of a converted POMDP (from pre-
vious section) during execution. We assume here that the
employed POMDP solver returns value vectors (along with
dominating actions) across the belief space. Typically, the
policy execution in a POMDP is initiated by executing the
action at the root of the policy tree, selecting and execut-
ing the next action based on the received observation and
so on. This type of policy execution suffices in normal
POMDPs, however, in extending POMDPs corresponding
to D-POMDPs, the policy execution can be improved. The
key intuition here is that during policy execution the beliefs
that an agent has can be outdated (due to not updating the
belief once observations are delayed). Hence, the idea is to
keep the belief state as updated as possible in an efficient
manner, i.e. updating the beliefs as and when the delayed
observations are received.

4. EXPERIMENTS
1At execution time, we can receive observations at delays
greater than D

In this paper, we have experimented with different types
of problems to evaluate the performance of our planning
and execution algorithms. Since state-of-the-art POMDP
solvers [5] are already capable of solving problems involving
hundreds of thousands of states and we hope to implement
our techniques on top of those approaches. However, in this
paper, we will be focusing mainly on understanding how
much our planning and execution approaches can improve
with respect to quality as the delay distribution increases in
complexity.

Figure 1: Comparison of solution quality

We experimented with benchmark problems in POMDP
literature with different delay distributions. The main prob-
lems that we experimented with include: “tiger”, “1d maze”,
“network”, “4x4.95.POMDP” and “paint95”, taken from An-
thony Cassandra’s POMDP page. Observation delay is de-
fined by the set of discrete distributions X in the D-POMDP
model. Our planning algorithms are represented as D0, D1,
D2 etc., where the number corresponds to the D employed in
the conversion of D-POMDP to POMDP. We compare the
solution quality obtained by D0, D1 and D2 with and with-
out the online policy modification component (Runtime)
against the solution quality obtained if there was no delay in
receiving observation. To solve the converted POMDP prob-
lems we employ the Point Based Value Iteration solver [2],
but any of the existing solvers can be employed. Figure 1
shows the performance of our algorithms as the maximum
possible observation delay, ∆, is increased. The problems
are categorized according to the value of {X (0) + X (1)}.

5. REFERENCES
[1] J.L. Bander and C.C. White. Markov decision processes

with noise corrupted and delayed state observations.
Journal of OR Society, 50:660–668, 1999.

[2] G. Gordon J. Pineau and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps. In
International Joint Conference in Artificial Intelligence,
2003.

[3] K.V. Katsikopoulos and S. E. Engelbrecht. Markov
decision processes with delays and asynchronous cost
collection. IEEE transactions on automatic control,
48:568–574, 2003.

[4] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and
S. Marsella. Taming decentralized POMDPs: Towards
efficient policy computation for multiagent settings. In
IJCAI, 2003.

[5] T. Smith and R. G. Simmons. Point-based pomdp
algorithms: Improved analysis and implementation. In
UAI, 2005.


