
Incremental DCOP Search Algorithms for Solving
Dynamic DCOP Problems

William Yeoh†, Pradeep Varakantham‡, Xiaoxun Sun?, and Sven Koenig+

†Department of Computer Science, New Mexico State University
‡School of Information Systems, Singapore Management University

?Google Inc.
+Department of Computer Science, University of Southern California

†wyeoh@cs.nmsu.edu ‡pradeepv@smu.edu.sg ?xiaoxunsun@google.com +skoenig@usc.edu

Abstract—Distributed constraint optimization (DCOP) prob-
lems are well-suited for modeling multi-agent coordination prob-
lems. However, it only models static problems, which do not
change over time. Consequently, researchers have introduced the
Dynamic DCOP (DDCOP) model to model dynamic problems.
In this paper, we make two key contributions: (a) a procedure
to reason with the incremental changes in DDCOPs and (b) an
incremental pseudo-tree construction algorithm that can be used
by DCOP algorithms such as any-space ADOPT and any-space
BnB-ADOPT to solve DDCOPs. Due to the incremental reasoning
employed, our experimental results show that any-space ADOPT
and any-space BnB-ADOPT are up to 42% and 38% faster,
respectively, with the incremental procedure and the incremental
pseudo-tree reconstruction algorithm than without them.

I. INTRODUCTION

Distributed constraint optimization (DCOP) problems are
problems where agents need to coordinate their value assign-
ments to minimize the sum of the resulting constraint costs [1],
[2], [3], [4], [5]. They are well-suited for modeling multi-
agent coordination problems where the primary interactions
are between local subsets of agents, such as the scheduling
of meetings [6], the coordination of sensors in networks [7],
and the generation of coalition structures [8]. Unfortunately,
DCOP problems only model static problems or, in other words,
problems that do not change over time. In the above mentioned
coordination problems, various events that change the problem
can occur. For example, in the scheduling of meetings, new
meetings might need to be scheduled, time constraints of
meeting participants could have changed, or the priorities of
meetings could have changed.

As a result, researchers have introduced the Dynamic DCOP
(DDCOP) model [9], [10], [11], [12], [13], which is modeled
as a sequence of DCOPs, each partially different from the
DCOP preceding it. Existing algorithms thus far take a reactive
approach and solves dynamic DCOPs by searching for a new
solution each time the problem changes. Since the change
between subsequent DCOPs can be small, it might be possible
to reuse information from previous DCOPs to speed up the
search of the current DCOP. In this paper, we investigate
how to maximize the amount of information reuse by DCOP
search algorithms. Specifically, we introduce an incremental
procedure and an incremental pseudo-tree reconstruction al-
gorithm that can be used by any-space DCOP search algo-

rithms to reuse information gained from solving the previous
DCOP problem. Our experimental results show that any-space
ADOPT [14] and any-space BnB-ADOPT [15] are up to 42%
and 38% faster, respectively, with the incremental procedure
and incremental pseudo-tree reconstruction algorithm than
without them.

II. BACKGROUND

A. DCOP Problems

A DCOP problem P is defined as a tuple 〈A,D,F 〉.
A = {ai}n0 is the finite set of agents. D = {di}n0 is the set of
finite domains, where domain di is the set of possible values
for agent ai ∈ A. F = {fi}m0 is the set of binary constraints,
where each constraint fi : di1 × di2 → R+ ∪ ∞ specifies
its non-negative constraint cost as a function of the values of
the two different agents ai1 , ai2 ∈ A that share the constraint.
Each agent is responsible for assigning itself values from its
domain. The agents coordinate their value assignments by
exchanging messages. A solution is an agent-value assignment
for a subset of agents. Its cost is the sum of the constraint
costs of all constraints shared by agents with known values.
A solution is called complete iff it is an agent-value assignment
for all agents. Solving a DCOP problem means to find a cost-
minimal complete solution.

DCOP problems are commonly visualized as constraint
graphs, whose vertices are the agents and whose edges are the
constraints. Most DCOP search algorithms operate on pseudo-
trees. Pseudo-trees are spanning trees of fully connected
constraint graphs such that no two vertices in different subtrees
of the spanning tree are connected by an edge in the constraint
graph. Figure 1(a) shows the constraint graph of an example
DCOP problem with three agents that can each take on the
values 0 or 1, Figure 1(b) shows one possible pseudo-tree
(the dotted line is called a backedge, which is an edge of the
constraint graph that does not connect a pair of parent-child
nodes), and Figure 1(c) shows the constraint costs. Sibling
subtrees of pseudo-trees represent independent subproblems
in a DCOP problem. DCOP algorithms prefer pseudo-trees
with many sibling subtrees or, equivalently, pseudo-trees with
small depths since they can solve independent subproblems in
parallel and thus solve them faster.

a1

a3

a2

a1

a3

a2

for i < j

ai aj Cost
0 0 5
0 1 8
1 0 20
1 1 3

(a) (b) (c)

Fig. 1. Example DCOP Problem

h i onmlkj

a

cb

gfed

a1

a3

a2

(a)

10 16 64011251125

0

00

32085

a1

a3

a2

(b)

10 16 64011251125

9

915

9311915

a1

a3

a2

(c)

Fig. 2. Search Trees

B. ADOPT and BnB-ADOPT

ADOPT [1] and BnB-ADOPT [4] transform the constraint
graph to a pseudo-tree in a pre-processing step and then search
for a cost-minimal complete solution. They have identical
memory requirements and communication frameworks but
have different search strategies.

We use search trees and terminology from A* to visualize
the operation of ADOPT and BnB-ADOPT. Each level of a
search tree corresponds to an agent. For our example DCOP
problem, the level of depth 1 corresponds to agent a1. A
left branch that enters a level means that the corresponding
agent takes on the value 0. A right branch means that the
corresponding agent takes on the value 1. A node in the search
tree thus corresponds to a solution. For our example DCOP
problem, the solution of node j is (a1 = 0, a2 = 1, a3 = 0),
where we use the identifiers shown in Figure 2(a) to refer to
nodes. The numbers in the nodes in Figure 2(b) are their delta
costs. The delta cost of a node is the sum of the costs of all
constraints in the solution of that node that involve the agent
corresponding to the level of that node. For example, the delta
cost of node j is the sum of the costs of all constraints in the
solution of node j that involve agent a3. Therefore, it is the
sum of the cost of the constraint between agents a1 and a3,
which is five, and the cost of the constraint between agents a2
and a3, which is twenty, resulting in twenty five. The numbers
in the nodes in Figure 2(c) are their gamma costs. The gamma
cost of a node is the smallest sum of the delta costs of all nodes
along any branch of the search tree from that node to a leaf
node. The gamma cost of the root node is thus the cost of a
cost-minimal complete solution.

ADOPT and BnB-ADOPT are different in their choice of
search strategy for traversing the search tree. ADOPT uses
best-first search while BnB-ADOPT uses depth-first branch-
and-bound search. ADOPT and BnB-ADOPT are similar in
that each agent maintains only the lower and upper bounds
on the gamma costs of at most two nodes in its level of
the search tree at all times due to memory limitations. They
are the children of the node whose solution is the agent’s
current context, which is the agent’s assumption on the agent-
value assignments for all its ancestors in the pseudo-tree. For
example, if the current context of agent a3 is (a1 = 0, a2 = 0),
then it maintains the lower and upper bounds on the gamma
costs of nodes h and i. Therefore, each agent can maintain
only one information unit at all times. An information unit
consists of the lower and upper bounds that the agent maintains
for one context. On the other hand, each agent in any-space
ADOPT [14] and any-space BnB-ADOPT [15] can maintain

multiple information units, where each information unit con-
sists of the lower and upper bounds for a different context.
Runtimes of any-space ADOPT and any-space BnB-ADOPT
typically decrease as they have more memory available [15].

Finally, researchers have also further optimized BnB-
ADOPT by (1) reducing the number of messages that it
requires [16]; (2) extending it to maintain soft arc consistency
during search [17], [18], [19]; and (3) combined it with
ADOPT to form a generalized asynchronous DCOP search
algorithm [20].

C. DDCOP Problems

A Dynamic DCOP (DDCOP) problem is defined by a tuple
〈P0, T, C,∆〉. P0 is the DCOP problem that models the initial
coordination problem. T is the time horizon, where each
time step 1 ≤ t ≤ T represents a point in time where the
coordination problem changes. In this paper, we assume that
the time between subsequent time steps are sufficiently large
to solve the current problem. C = {ci}k0 is the set of
possible changes and ∆ = {∆t}T1 captures the dynamism in
the coordination problem by representing the changes at each
time step. ∆t = {P (ci)|ci∈C} is the probability distribution
of the changes that can occur at time step t.

We consider a DDCOP problem as a sequence of DCOP
problems with changes between them. Solving a DDCOP
problem optimally means finding a cost-minimal solution for
each DCOP problem in the sequence. Therefore, this approach
is a reactive approach since it does not consider future
changes. The advantage of this approach is that solving DD-
COP problems is no harder than solving T DCOP problems.
Researchers have used this approach to solve DDCOPs [9],
where they introduce a super-stabilizing DPOP algorithm that
is able to reuse information from previous DCOPs to speed
up the search for the solution for the current DCOP. Our
approach is similar except that (1) we investigate search-based
algorithms instead of inference based algorithms and (2) we
investigate ways to maximize the amount of information reuse
through pseudo-tree reconstruction.

Alternatively, a proactive approach predicts future changes
in the DDCOP problem and finds robust solutions that require
little or no changes despite future changes. Researchers have
used this approach to solve dynamic constraint satisfaction
problems [23], [24] but not DDCOP problems to the best of
our knowledge.

Researchers have also proposed other models for DDCOP
problems including a model where agents have deadlines
to choose their values and incur a cost for changing their
value assignments when the problem changes [10] and a

a
1

a
2

a
3

a
4

a
5

a
6

a
7

(a) Initial
pseudo-tree

a
1

a
7

a
6

a
5

a
3

a
4

a
2

(b) DFS
pseudo-tree

a
1

a
2

a
3

a
6

a
7

a
4

a
5

(c) Mobed
pseudo-tree

a
1

a
5

a
6

a
7

a
3

a
4

a
2

(d) HARP
pseudo-tree

Fig. 3. Pseudo-trees

model where agents can have imperfect knowledge about
their environment [11]. Lastly, researchers have also intro-
duced incomplete algorithms to solve DDCOP problems sub-
optimally [25], [26].

D. Pseudo-tree Algorithms

One can use DCOP algorithms to solve DDCOP problems
by running the algorithm each time the problem changes.
However, before solving the current DCOP problem, DCOP
algorithms may need to reconstruct their pseudo-trees to reflect
the changes from the previous DCOP problem. For example, if
an agent is removed, then a DCOP algorithm needs to remove
that agent from its pseudo-tree. Since constructing optimal
pseudo-trees is NP-hard [21], researchers have developed
greedy distributed algorithms to construct them. For example,
the distributed Depth-First Search (DFS) algorithm constructs
the pseudo-tree for each DCOP problem from scratch by
using DFS to traverse the constraint graph for that DCOP
problem [22]. Figure 3(a) shows an example initial pseudo-
tree, and Figure 3(b) shows the pseudo-tree reconstructed by
the distributed DFS algorithm after the constraint between
agents a4 and a5 is removed.

Another example is the Multiagent Organization with
Bounded Edit Distance (Mobed) algorithm, which constructs
pseudo-trees with small edit distances between subsequent
DCOP problems [12]. The edit distance between two pseudo-
trees is the smallest number of parent-child relationships that
must be re-assigned, added or deleted in order for both pseudo-
trees to become isomorphic. It requires a different algorithm,
such as the distributed DFS algorithm, to construct the pseudo-
tree of the first DCOP problem. For each new agent that is
added to the DCOP problem, Mobed identifies an insertion
point in the pseudo-tree of the previous DCOP problem and
adds the new agent to the pseudo-tree at that insertion point.
For each agent that is removed from the DCOP problem,
Mobed removes that agent from the pseudo-tree and makes all
children of the removed agent the children of the parent of the
removed agent. For each constraint that is added or removed,
Mobed removes and adds all agents that share that constraint.
For example, Figure 3(c) shows the pseudo-tree reconstructed
by the Mobed algorithm after the constraint between agents
a4 and a5 was removed.

10 16 64011251125

0

00

5555

a1

a3

a2

(a)
10 16 64011251125

11

1115

11161615

a1

a3

a2

(b)

Fig. 4. New Delta and Gamma Costs

III. REUSEBOUNDS PROCEDURE

When solving a DDCOP problem, instead of solving each
DCOP problem from scratch, any-space DCOP search al-
gorithms can reuse information from searches of previous
DCOP problems to guide their search to potentially solve
the current DCOP problem faster. Therefore, we introduce the
ReuseBounds procedure, an incremental procedure that any-
space ADOPT and any-space BnB-ADOPT can use to identify
lower and upper bounds obtained from solving the previous
DCOP problem that can be reused to solve the current DCOP
problem. After each change in the DDCOP problem, any-
space ADOPT and any-space BnB-ADOPT first reconstruct
their pseudo-trees and then call the ReuseBounds procedure
before solving the current DCOP problem.

Initially, the ReuseBounds procedure identifies potentially
affected and unaffected agents in the current DCOP problem.
The potentially affected agents are those agents whose lower
and upper bounds from the previous DCOP problem may no
longer be correct bounds for the current DCOP problem. The
unaffected agents are the other agents. Once the agents are
identified, each potentially affected agent purges all its cached
information units before solving the current DCOP problem.
Unaffected agents reuse the lower and upper bounds in all
their cached information units.

Specifically, an agent is a potentially affected agent iff the
gamma costs of nodes in its level of the search tree can
change between the previous and current DCOP problems.
A gamma cost can change iff one can assign some costs
to each constraint that is added, removed, or whose costs
changed in such a way that the gamma cost indeed changes.
If the gamma cost of a node changes, then the lower and
upper bounds of that node, which were correct bounds in the
previous DCOP problem, may no longer be correct bounds
in the current DCOP problem. Unfortunately, an agent cannot
directly discern if the gamma costs of nodes in its level of the
search tree can change because it needs to solve the current
DCOP problem to do so. However, an agent can determine if
it is a potentially affected agent by checking if it has one or
more of the following properties:

• Property 1: The agent shares an added constraint, deleted
constraint, or constraint with changed constraint costs with
another agent. If the agent shares the constraint with a
descendant, then it is a potentially affected agent (see Prop-
erty 3). If the agent shares the constraint with an ancestor,
then the changes in the constraints can change the delta costs
of some nodes in its level of the search tree, which in turn
can change the gamma costs of those nodes. The agent is
thus a potentially affected agent.

• Property 2: The agent has different children between the
previous and current DCOP problems. This difference can
change the children of nodes in the level of the agent in the
search tree, which in turn can change the gamma costs of
those nodes. The agent is thus a potentially affected agent.
• Property 3: The agent a has a descendant that is a poten-

tially affected agent. If the descendant is a potentially affected
agent, then the sum of the delta costs of all nodes along some
branch of the search tree from some leaf node to some node
in the level of the descendant can change. This branch of the
search tree can be extended up the search tree to some node
in the level of agent a in the search tree. Therefore, the sum
of the delta costs of all nodes along this extended branch can
also change, which in turn can change the gamma costs of
the node (in that branch) that is in the level of agent a. Agent
a is thus a potentially affected agent.
For example, assume that the costs of the constraint between

agents a1 and a2 change to five for all value combinations
in our example DCOP problem. Figure 4(a) shows the new
delta costs, and Figure 4(b) shows the new gamma costs.
The change in the constraint costs changes the delta costs
of nodes d through g, which in turn changes the gamma
costs of those nodes. Thus, agent a2 is a potentially affected
agent since it maintains the lower and upper bounds of those
nodes (Property 1). The change in the delta costs also changes
the gamma costs of nodes a through c. Thus, agent a1 is
a potentially affected agent since it maintains the lower and
upper bounds of those nodes (Property 3).

Each agent can directly discern if it has Properties 1 or 2.
However, it cannot directly discern if it has Property 3 since
it knows neither the constraints nor the set of children of
each of its descendants. Therefore, each agent in any-space
ADOPT and any-space BnB-ADOPT runs the ReuseBounds
procedure to discern if it has Property 3 after it reconstructs
the pseudo-tree for the current DCOP problem. The idea
behind the procedure is the following. Leaf agents first identify
themselves as potentially affected or unaffected agents, which
they can do because they do not need to consider Property 3
since they have no descendants. The leaf agents then send
RESPONSE messages to their parents with that information.
The parents then identify themselves as potentially affected or
unaffected agents, which they can now do because they know
whether they have Property 3 or not or, in other words, whether
any of their children are potentially affected agents or not. The
agents propagate the RESPONSE messages up the pseudo-tree
until they reach the root agent. Ideally, the leaf agents ought to
automatically start the process and send RESPONSE messages
once there is a change in the problem. Unfortunately, they are
not aware of all possible changes in the problem since they
are only aware of their constraints and the agents that they
are constrained with. Therefore, the ReuseBounds procedure
use START and QUERY messages to trigger the leaf agents
to send RESPOND messages.

Figure 5 shows the pseudocode. The code is identical for
every agent with variable a pointing to the agent executing
the code. Each agent initially identifies itself as an unaffected

01 procedure ReuseBounds()
02 sentSTART := amAffected := false;
03 loop forever
04 if(message queue is not empty)
05 pop msg off message queue;
06 When Received(msg);
07 if(!sentSTART and detected changes in its constraints

or its set of children)
08 sentSTART := true;
09 Send(START) to parent;
10 Send(QUERY) to each child if a is root;

11 procedure When Received(START)
12 if(!sentSTART)
13 sentSTART := true;
14 Send(START) to parent;
15 Send(QUERY) to each child if a is root;

16 procedure When Received(QUERY)
17 Send(QUERY) to each child;
18 if(a is a leaf)
19 if(detected changes in its constraints or its set of children)
20 amAffected := true;
21 Send(RESPONSE, a, amAffected) to parent;

22 procedure When Received(RESPONSE, c, c.amAffected)
23 if(c.amAffected or detected changes in its constraints or its set of children)
24 amAffected := true;
25 if(received a RESPONSE message from each child)
26 Send(RESPONSE, a, amAffected) to parent;
27 if(a is root)
28 if(amAffected)
29 purge all information units;
30 Send(STOP) to each child;
31 restart DCOP algorithm to solve the current DCOP problem;

32 procedure When Received(STOP)
33 if(amAffected)
34 purge all information units;
35 Send(STOP) to each child;
36 restart DCOP algorithm to solve the current DCOP problem;

Fig. 5. Pseudocode of ReuseBounds

agent [Line 2]. Then, each agent with Properties 1 or 2
sends a START message to its parent [Lines 7-9], which is
propagated up the pseudo-tree to trigger the root agent to send
QUERY messages [Lines 11-14]. When the root agent receives
a START message, it sends a QUERY message to each of
its children [Line 15], which is propagated down the pseudo-
tree to trigger the leaf agents to send RESPOND messages
[Lines 16-17]. When a leaf agent receives a QUERY message,
it identifies itself as a potentially affected agent if it has
Properties 1 or 2 [Lines 18-20] and then sends a RESPOND
message with that information to its parent [Line 21]. When
an agent receives a RESPOND message from each of its
children, it identifies itself as a potentially affected agent if it
has Properties 1, 2, or 3 [Lines 22-24] and sends a RESPOND
message with that information to its parent [Lines 25-26]. (An
agent has Property 3 if it receives a RESPOND message from
a potentially affected agent.) Therefore, RESPOND messages
propagate up the pseudo-tree until they reach the root agent.
Finally, when the root agent receives a RESPOND message
from each of its children, each agent with Properties 1, 2, or 3
must have identified itself as a potentially affected agent. The
root agent thus sends a STOP message to each of its children
[Line 30], which is propagated down the pseudo-tree and ends
the ReuseBounds procedure [Lines 32-36].

After running the ReuseBounds procedure, any-space
ADOPT and any-space BnB-ADOPT restart as usual to solve

b
1

b
2

b
3

b
4

b
5

b
6

b
6

(a) Assigning
pseudo-IDs

b1

b2

b3

b4

b5

b6

b6

New artificial

constraint

Group of agents

with the same

pseudo-ID

(b) Artificially
constraining

agents b1 and b5

b1

b5

b6 b3

b4

b2

Pseudo-agent

which consists of

agents a6 and a7

(c) Constructing
DFS pseudo-tree

Fig. 6. HARP Pseudo-tree Reconstruction Steps

the current DCOP problem except that the unaffected agents
now reuse their bounds from the previous DCOP problem in
the current DCOP problem. Therefore, any-space ADOPT and
any-space BnB-ADOPT might be able to solve the current
DCOP problem faster since the unaffected agents do not need
to recompute the lower and upper bounds that they reused.

IV. HARP ALGORITHM

The Mobed algorithm constructs pseudo-trees with small
edit distances. On the other hand, the distributed DFS algo-
rithm constructs its pseudo-trees from scratch, which can have
large edit distances. Therefore, there is usually a larger number
of unaffected agents in the Mobed pseudo-trees than in the
DFS pseudo-trees. For example, in our example pseudo-trees
of Figure 3, there is one unaffected agent (= agent a7) in the
Mobed pseudo-tree and there are no unaffected agents in the
DFS pseudo-tree. On the other hand, DFS pseudo-trees can
have smaller depths than Mobed pseudo-trees. For example,
in our example pseudo-trees of Figure 3, the depth of the
DFS pseudo-tree is one smaller than the depth of the Mobed
pseudo-tree. Pseudo-trees with smaller depths are desirable
since they have a larger number of independent subtrees or,
synonymously, a larger number of independent subproblems.
Thus, there is a tradeoff between the depths and edit distances
of pseudo-trees.

We therefore introduce the Hybrid Algorithm for Recon-
structing Pseudo-trees (HARP), an incremental pseudo-tree
reconstruction algorithm that reuses parts of the pseudo-tree
of the previous DCOP problem to construct the pseudo-tree
of the current DCOP problem. It combines the principles and
strengths of the Mobed and distributed DFS algorithms. Like
the Mobed algorithm, HARP aims to preserve the parent-
child relationships of unaffected agents in the pseudo-tree and,
like the distributed DFS algorithm, HARP reconstructs the
part of the pseudo-tree with the affected agents from scratch.
Affected agents are agents from the previous DCOP problem
that are guaranteed to be potentially affected agents in the
current DCOP problem regardless of the choice of pseudo-tree
reconstruction algorithm. They are (1) the agents that share an
added constraint, deleted constraint or constraint with changed
costs with another agent (Property 1) and (2) their ancestors in

01 procedure HARP()
02 sentSTART := amAffected := false;
03 pseudoID := agentID;
04 loop forever
05 if(message queue is not empty)
06 pop msg off message queue;
07 When Received(msg);
08 if(!sentSTART and detected changes in its constraints)
09 sentSTART := true;
10 Send(START) to parent;
11 Send(QUERY) to each child if a is root;

12 procedure When Received(START)
13 if(!sentSTART)
14 sentSTART := true;
15 Send(START) to parent;
16 Send(QUERY) to each child if a is root;

17 procedure When Received(QUERY)
18 Send(QUERY) to each child;
19 if(a is a leaf)
20 if(detected changes in its constraints)
21 amAffected := true;
22 Send(RESPONSE, a, amAffected) to parent;

23 procedure When Received(RESPONSE, c, c.amAffected)
24 if(c.amAffected or detected changes in its constraints)
25 amAffected := true;
26 if(received a RESPONSE message from each child)
27 Send(RESPONSE, a, amAffected) to parent;
28 Send(PSEUDOID, pseudoID, amAffected) to each child if a is root;
29 procedure When Received(PSEUDOID, p.pseudoID, p.amAffected)
30 if(!amAffected and p.amAffected)
31 Send(CONSTRAINT, a, sep(a)) to each ancestor in sep(a);
32 else
33 if(!p.amAffected)
34 pseudoID := p.pseudoID;
35 Send(PSEUDOID, pseudoID, amAffected) to each child;
36 Send(PSEUDOID-ACK) to parent if a is leaf;

37 procedure When Received(PSEUDOID-ACK)
38 if(received a PSEUDOID-ACK message from each child)
39 Send(PSEUDOID-ACK) to parent;
40 if(a is root)
41 Send(STOP) to each child;
42 run distributed DFS algorithm;

43 procedure When Received(CONSTRAINT, c, c.SCP)
44 artificially constrain itself with each agent in c.SCP ;
45 Send(CONSTRAINT-ACK) to c;

46 procedure When Received(CONSTRAINT-ACK)
47 if(received a CONSTRAINT-ACK message from each ancestor in sep(a))
48 Send(PSEUDOID, pseudoID, amAffected) to each child;
49 Send(PSEUDOID-ACK) to parent if a is leaf;

50 procedure When Received(STOP)
51 Send(STOP) to each child;
52 run distributed DFS algorithm;

Fig. 7. Pseudocode of HARP

the pseudo-tree of the previous DCOP problem (Property 3).
(Other agents might become potentially affected agents as well
but that depends on the choice of pseudo-tree reconstruction
algorithm and is thus not guaranteed.)

HARP operates on the pseudo-tree of the previous DCOP
problem to identify the affected agents and calls the distributed
DFS algorithm to construct the pseudo-tree of the current
DCOP problem in such a way that non-affected agents are
unaffected agents in the current DCOP problem. Recall that
unaffected agents are agents that are not potentially affected
agents. For example, imagine that the constraint between
agents a4 and a5 of Figure 3(a) is removed. The affected
agents are agents a4 and a5 since they have Property 1 and

agents a1, a2 and a3 since they have Property 3. Figure 6
shows the steps of HARP to reconstruct the pseudo-tree for
the current DCOP problem. HARP assigns a unique pseudo-
ID to all agents in the problem with the exception that, all
agents in an unaffected subtree are assigned the same pseudo-
ID. An unaffected subtree is a strict subtree that has only
unaffected agents. In our example, HARP assigns agents a1,
a2, a3, a4 and a5 the pseudo-IDs b1, b2, b3, b4 and b5,
respectively. HARP assigns agents a6 and a7 the same pseudo-
ID b6 since they are in an unaffected subtree. Figure 6(a) shows
the pseudo-tree with the pseudo-ID of each agent. For each
group of agents with the same pseudo-ID that is not in a larger
group of agents with the same pseudo-ID, HARP artificially
constrains all their parents and pseudo-parents that are not in
the group to each other. An agent is a pseudo-parent of another
agent if the former agent is an ancestor of the latter agent
in the pseudo-tree and they are connected via a backedge in
the pseudo-tree. In our example, HARP artificially constrains
agents a1 (with pseudo-ID b1) and a5 (with pseudo-ID b5)
since agent a1 is a pseudo-parent of agent a7 and agent a5 is
a parent of agent a6. Figure 6(b) shows the pseudo-tree with
the new artificial constraint.

HARP then runs the distributed DFS algorithm except that
it treats all agents with the same pseudo-ID as a single
pseudo-agent and sets pseudo-agents as children of the current
agent only if every affected agent that is constrained with the
current agent is already in the pseudo-tree. Therefore, pseudo-
agents are leaf agents in the new pseudo-tree because every
agent that they are constrained with was chosen first due to
the artificial constraints. Therefore, non-affected agents do
not have Properties 2 and 3 because pseudo-agents are leaf
agents and all agents in a pseudo-agent thus have the same
descendants, which are non-affected agents themselves, in the
new pseudo-tree. Non-affected agents do not have Property 1
either because they are affected agents otherwise. Therefore,
all non-affected agents are unaffected agents in the current
DCOP problem. Figure 6(c) shows the resulting pseudo-tree
with pseudo-agents in our example, and Figure 3(d) shows the
pseudo-tree with actual agents. The HARP pseudo-tree has the
same depth as the DFS pseudo-tree and has two unaffected
agents (= agents a6 and a7) compared to one unaffected agent
in the Mobed pseudo-tree and no unaffected agents in the DFS
pseudo-tree.

Figure 7 shows the pseudocode of the HARP algorithm. The
code is identical for every agent with variable a pointing to
the agent executing the code and sep(a) is the separator set
of variable a, i.e., the set of its ancestors that are parents or
pseudo-parents of its descendants or the agent itself. There are
two phases in the HARP algorithm. The first phase identifies
affected agents and is very similar to how the ReuseBounds
procedure identifies potentially affected agents. The second
phase assigns pseudo-IDs to agents and imposes artificial
constraints between agents before calling the distributed DFS
algorithm to reconstruct the pseudo-tree. In general, the first
phase of the HARP algorithm is as follows: Agents with
Property 1 sends a START message to its parent [Lines 8-

9], which is propagated up the pseudo-tree to trigger the root
agent to send QUERY messages [Lines 12-15]. When the root
agent receives a START message, it sends a QUERY message
to each of its children [Line 16], which is propagated down
the pseudo-tree to trigger the leaf agents to send RESPOND
messages [Lines 17-18]. When a leaf agent receives a QUERY
message, it identifies itself as an affected agent if it has
Property 1 [Lines 19-21] and then sends a RESPOND message
with that information to its parent [Line 22]. When an agent
receives a RESPOND message, it identifies itself as an affected
agent if it has Properties 1 or 3 [Lines 23-25] and sends
a RESPOND message with that information to its parent
[Line 27]. (An agent has Property 3 if it receives a RESPOND
message from an affected agent.) Therefore, RESPOND mes-
sages propagate up the pseudo-tree until they reach the root
agent. When the root agent receives a RESPOND message
from each of its children, each agent with Properties 1 or 3
must have identified itself as an affected agent. The root agent
thus starts the second phase of the HARP algorithm by sending
a PSEUDOID message to each of its children [Line 28], which
is propagated down the pseudo-tree. When an agent receives a
PSEUDOID message, if it is an affected agent or is the root of
an unaffected subtree, then it sets its pseudo-ID to its unique
agent-ID. Otherwise, it sets its pseudo-ID to the pseudo-ID of
the root of the unaffected subtree that it is in [Lines 32-33].
Additionally, when a root agent a of an unaffected subtree
receives a PSEUDOID message, it sends a CONSTRAINT
message to each of its ancestors in sep(a) [Lines 29-31]
such that they artificially constrain themselves to each other
[Lines 43-44]. When a leaf agent receives a PSEUDOID
message, it sends a PSEUDOID-ACK message to its parent
[Line 36], which is propagated up the pseudo-tree [Lines 37-
39]. Finally, when the root agent receives a PSEUDOID-ACK
message from each of its children, it sends STOP messages
to its children [Lines 40-41], which is propagated down the
pseudo-tree and ends the HARP algorithm [Lines 50-52].

V. EXPERIMENTAL RESULTS

We now compare any-space ADOPT and any-space BnB-
ADOPT using the ReuseBounds procedure and the distributed
DFS, Mobed, and HARP pseudo-tree reconstruction algo-
rithms. We measure the runtimes in cycles [1]. Although
we do not measure the runtimes in other metrics, such as
NCCCs [27], we believe that the reported trends carry over to
those metrics as well because the number of constraint checks
and the number of messages sent by each agent do not vary
much across cycles. We vary the amount of memory of each
agent with the cache factor metric [28] from 0 (each agent can
cache only one information unit) to 1 (each agent can cache
all information units). We use the MaxEffort and MaxPriority
caching schemes [15] for any-space ADOPT and any-space
BnB-ADOPT, respectively.

We consider the following five types of changes in our
experiments: c1 is the change in the costs of a random
constraint, c2 is the removal of a random constraint, c3 is
the addition of a random constraint, c4 is the removal of

Graph Coloring .

ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(a)

Graph Coloring .

BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(b)

Graph Coloring

ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(c)

Graph Coloring

BnB-ADOPT

0%

10%

20%

30%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(d)
Fig. 8. Experimental Results for Type 1 DDCOP Problems

Graph Coloring .

ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(a)

Graph Coloring .

BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(b)

Graph Coloring

ADOPT

0%

10%

20%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(c)

Graph Coloring

BnB-ADOPT

0%

10%

20%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(d)
Fig. 9. Experimental Results for Type 2 DDCOP Problems

Graph Coloring .

ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(a)

Graph Coloring .

BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
y
c
le

s

Mobed

Mobed + ReuseBounds

DFS

DFS + ReuseBounds

HARP

HARP + ReuseBounds

(b)

Graph Coloring

ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(c)

Graph Coloring

BnB-ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

e
e

d
u

p

Mobed

DFS

HARP

(d)
Fig. 10. Experimental Results for Type 3 DDCOP Problems

a random agent, and c5 is the addition of a random agent.
We randomly generated graph coloring problems of density 2,
domain cardinality 5 and constraint costs of 0–10,000 as the
initial DCOP problems P0. We constructed three types of
DDCOP problems with time horizon T = 5 and one change
at each time step:
• Type 1: ∆t = {P (ct) = 1},
• Type 2: ∆t = {P (ci) = P (cj) | ci, cj /∈

⋃
1≤t′<t Ct′},

where Ct is the change that occurred at time step t,
• Type 3: ∆t = {P (c1) = 1}.

We average the experimental results over 50 DDCOP problem
instances of each type.

Figures 8, 9, and 10 show our experimental results for any-
space ADOPT and any-space BnB-ADOPT with the Reuse-
Bounds procedure and the pseudo-tree reconstruction algo-
rithms on Types 1, 2, and 3 DDCOP problems, respectively.
We make the following observations:
• Figures 8(a,b), 9(a,b), and 10(a,b) show that the runtimes
of any-space ADOPT and any-space BnB-ADOPT decrease
as their cache factors increase. The reason for this behavior
is that they need to expand fewer nodes when they cache
more information [15].
• The runtimes of any-space ADOPT and any-space BnB-
ADOPT are smaller with the ReuseBounds procedure than
without the procedure. Figures 8(c,d), 9(c,d), and 10(c,d)
show the speedups gained with the ReuseBounds procedure.
We calculate the speedup by taking the difference in the
runtimes with and without the ReuseBounds procedure and

normalizing it by the runtime without the ReuseBounds
procedure. The figures show that the speedup increases
as the cache factor increases for all three pseudo-tree
reconstruction algorithms. The reason for this behavior is
that the unaffected agents can cache and reuse more lower
and upper bounds from the previous DCOP problems as the
cache factor increases.
• The runtimes of any-space ADOPT and any-space BnB-
ADOPT with the DFS and Mobed algorithms are identical
for each cache factor for Type 3 DDCOP problems. Mobed
does not reconstruct the pseudo-tree for the current DCOP
problem when the only change is the change in constraint
costs. DFS reconstructs the exact same pseudo-tree for the
current DCOP problem as the pseudo-tree for the previous
DCOP problem since all the agents are constrained in the
exact same way for both DCOP problems.
• Any-space ADOPT and any-space BnB-ADOPT with the
HARP algorithm and the ReuseBounds procedure are up to
42% and 38% faster, respectively, than with the distributed
DFS algorithm and without the ReuseBounds procedure.

To better understand the sources of speedup, we performed
an additional experiment with DDCOP problems with time
horizon T = 1 and ∆1 = {P (c1) = 1}, where we
varied the depth of the deepest affected agent in the pseudo-
tree. Figure 11 shows the experimental results for any-space
ADOPT and any-space BnB-ADOPT using the distributed
DFS algorithm. (The results with the HARP algorithm are
similar.) They show that the speedup increases as the depth

25%

50%

75%

100%
0.0

0.2

0.4

0.6

0.8

1.0
0%

20%

40%

60%

80%

100%

S
p

e
e

d
u

p

Depth of

Deepest Affected

Agent

Cache

Factor

ADOPT

(a)

25%

50%

75%

100%
0.0

0.2

0.4

0.6

0.8

1.0
0%

20%

40%

60%

80%

100%

S
p

e
e

d
u

p
Depth of

Deepest Affected

Agent

Cache

Factor

BnB-ADOPT

(b)
Fig. 11. Secondary Experimental Results

of the deepest affected agent decreases. The reason for this
behavior is that the number of unaffected agents increases as
the depth of the deepest affected agent decreases, and more
lower and upper bounds from the previous DCOP problem
are thus reused. Overall, the ReuseBounds procedure exper-
imentally speeds up any-space ADOPT and any-space BnB-
ADOPT for all three pseudo-tree reconstruction algorithms,
and the speedup increases as the cache factor increases and as
the depth of the deepest affected agent decreases.

VI. CONCLUSIONS

DDCOP problems are well-suited for modeling multi-agent
coordination problems that change over time. In this paper, we
introduced the ReuseBounds procedure and the HARP pseudo-
tree reconstruction algorithm that can be employed by any-
space ADOPT and any-space BnB-ADOPT to solve DDCOP
problems optimally. The ReuseBounds procedure allows the
agents that are unaffected by the changes in the DDCOP
problem to reuse their lower and upper bounds from the pre-
vious DCOP problem. The HARP pseudo-tree reconstruction
algorithm reconstructs the pseudo-tree for the current DCOP
problem in such a way that maximizes the number of such
unaffected agents. Our experimental results show that the
speedup gained by using the ReuseBounds procedure increases
as the amount of available memory increases. In general,
we expect the ReuseBounds procedure to apply to other
DCOP search algorithms with other pseudo-tree reconstruction
algorithms as well since all DCOP search algorithms maintain
lower and upper bounds on the solution costs. We also expect
the HARP algorithm to apply to other DCOP algorithms that
operate on pseudo-trees.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF, first
while Sven Koenig was serving at NSF and later under
grant numbers 1409987, 1319966, and 1345232. It is also
based upon work supported by ARL/ARO under contract/grant
number W911NF-08-1-0468, ONR in form of a MURI under
contract/grant number N00014-09-1-1031, and DOT under
contract/grant number DTFH61-11-C-00010.

REFERENCES

[1] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “ADOPT: Asyn-
chronous distributed constraint optimization with quality guarantees,”
Artificial Intelligence, vol. 161, no. 1–2, pp. 149–180, 2005.

[2] A. Petcu and B. Faltings, “A scalable method for multiagent constraint
optimization,” in Proceedings of IJCAI, 2005, pp. 1413–1420.

[3] A. Gershman, A. Meisels, and R. Zivan, “Asynchronous Forward-
Bounding for distributed COPs,” Journal of Artificial Intelligence Re-
search, vol. 34, pp. 61–88, 2009.

[4] W. Yeoh, A. Felner, and S. Koenig, “BnB-ADOPT: An asynchronous
branch-and-bound DCOP algorithm,” Journal of Artificial Intelligence
Research, vol. 38, pp. 85–133, 2010.

[5] W. Yeoh and M. Yokoo, “Distributed problem solving,” AI Magazine,
vol. 33, no. 3, pp. 53–65, 2012.

[6] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and P. Varakantham,
“Taking DCOP to the real world: Efficient complete solutions for
distributed event scheduling,” in Proceedings of AAMAS, 2004, pp. 310–
317.

[7] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings, “Decentralised
coordination of low-power embedded devices using the Max-Sum al-
gorithm,” in Proceedings of AAMAS, 2008, pp. 639–646.

[8] S. Ueda, A. Iwasaki, and M. Yokoo, “Coalition structure generation
based on distributed constraint optimization,” in Proceedings of AAAI,
2010, pp. 197–203.

[9] A. Petcu and B. Faltings, “Superstabilizing, fault-containing multiagent
combinatorial optimization,” in Proceedings of AAAI, 2005, pp. 449–
454.

[10] ——, “Optimal solution stability in dynamic, distributed constraint
optimization,” in Proceedings of IAT, 2007, pp. 321–327.

[11] R. Lass, E. Sultanik, and W. Regli, “Dynamic distributed constraint
reasoning,” in Proceedings of AAAI, 2008, pp. 1466–1469.

[12] E. Sultanik, R. Lass, and W. Regli, “Dynamic configuration of agent
organizations,” in Proceedings of IJCAI, 2009, pp. 305–311.

[13] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara,
“Distributed constraint optimization for teams of mobile sensing agents,”
Autonomous Agents and Multi-Agent Systems, vol. 29, no. 3, pp. 495–
536, 2015.

[14] T. Matsui, H. Matsuo, and A. Iwata, “Efficient methods for asynchronous
distributed constraint optimization algorithm,” in Proceedings of AIA,
2005, pp. 727–732.

[15] W. Yeoh, P. Varakantham, and S. Koenig, “Caching schemes for DCOP
search algorithms,” in Proceedings of AAMAS, 2009, pp. 609–616.

[16] P. Gutierrez and P. Meseguer, “Saving redundant messages in BnB-
ADOPT,” in Proceedings of AAAI, 2010, pp. 1259–1260.

[17] ——, “Improving BnB-ADOPT+-AC,” in Proceedings of AAMAS,
2012, pp. 273–280.

[18] ——, “BnB-ADOPT+ with several soft arc consistency levels,” in
Proceedings of ECAI, 2010, pp. 67–72.

[19] P. Gutierrez, J. Lee, K. M. Lei, T. Mak, and P. Meseguer, “Maintaining
soft arc consistencies in BnB-ADOPT+ during search,” in Proceedings
of CP, 2013, pp. 365–380.

[20] P. Gutierrez, P. Meseguer, and W. Yeoh, “Generalizing ADOPT and
BnB-ADOPT,” in Proceedings of IJCAI, 2011, pp. 554–559.

[21] S. Arnborg, D. Corneil, and A. Proskurowski, “Complexity of finding
embeddings in a k-tree,” SIAM Journal of Discrete Mathematics, vol. 8,
no. 2, pp. 277–284, 1987.

[22] Y. Hamadi, C. Bessière, and J. Quinqueton, “Distributed intelligent
backtracking,” in Proceedings of ECAI, 1998, pp. 219–223.

[23] R. Wallace and E. Freuder, “Stable solutions for dynamic constraint
satisfaction problems,” in Proceedings of CP, 1998, pp. 447–461.

[24] A. Holland and B. O’Sullivan, “Weighted super solutions for constraint
programs,” in Proceedings of AAAI, 2005, pp. 378–383.

[25] R. Mailler, “Comparing two approaches to dynamic, distributed con-
straint satisfaction,” in Proceedings of AAMAS, 2005, pp. 1049–1056.

[26] G. Billiau and A. Ghose, “SBDO: A new robust approach to dynamic
distributed constraint optimisation,” in Proceedings of PRIMA, 2009, pp.
641–648.

[27] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan, “Comparing perfor-
mance of distributed constraints processing algorithms,” in Proceedings
of the Distributed Constraint Reasoning Workshop, 2002, pp. 86–93.

[28] A. Chechetka and K. Sycara, “An any-space algorithm for distributed
constraint optimization,” in Proceedings of the AAAI Spring Symposium
on Distributed Plan and Schedule Management, 2006, pp. 33–40.

