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Orienteering Problems (OPs) are used to model many routing and trip planning problems. OPs are a vari-
ant of the well-known traveling salesman problem where the goal is to compute the highest reward path
that includes a subset of vertices and has an overall travel time less than a specified deadline. However,
the applicability of OPs is limited due to the assumption of deterministic and static travel times. To that
end, Campbell et al. extended OPs to Stochastic OPs (SOPs) to represent uncertain travel times [Campbell
et al. 2011]. In this paper, we make the following key contributions: (1) We extend SOPs to Dynamic SOPs
(DSOPs), which allow for time-dependent travel times; (2) we introduce a new objective criterion for SOPs
and DSOPs to represent a percentile measure of risk; (3) we provide non-linear optimization formulations
along with their linear equivalents for solving the risk-sensitive SOPs and DSOPs; (4) we provide a local
search mechanism for solving the risk-sensitive SOPs and DSOPs; and (5) we provide results on existing
benchmark problems and a real-world theme park trip planning problem.
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1. INTRODUCTION
In competitive orienteering sports, each individual starts at a specified control point,
tries to visit as many checkpoints as possible and returns to the starting control point
within a given time frame. Each checkpoint has a certain score and the objective is
to maximize the total collected score. Motivated by such orienteering sports, Orienteer-
ing Problems (OPs) [Tsiligrides 1984] represent the problem of selecting the maximum
reward path involving a subset of vertices that can be traversed within the given dead-
line. OPs have been studied extensively and for a detailed survey of existing work, re-
fer to the survey by Gunawan et al. [Gunawan et al. 2016]. Oversubscription planning
problems [Smith 2004] are another category of problems where OPs can potentially be
employed.

Unfortunately, OPs assume that travel times are deterministic and static, an as-
sumption that is not justifiable in most vehicle routing or trip design problems. This
is because travel time between two locations is not only dependent on distance trav-
eled but also on congestion levels, type of road segments, and other such factors. To
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that end, we are interested in OPs where the travel time between any two vertices
is not only uncertain (SOPs) but also time dependent or dynamic (DSOPs). The key
argument for dynamic travel times in DSOPs is that traffic is usually time dependent
(e.g., road congestion is high during peak hours and low at other times, traffic at large
roller coaster rides is low immediately after lunch, etc.).

Our research is motivated by a number of applications1 that have such uncertain
and time-dependent travel times:

(1) Trip design problems [Archetti et al. 2008; Gavalas et al. 2014; Gunawan et al.
2016] that are of relevance in large cities, theme parks, museums, large expos, etc.,
provide another compelling category of use cases for SOPs and DSOPs. Once again
the time available is limited, travel time (that can include a significant portion of
waiting time) is uncertain and time dependent due to varying congestion levels
at various points of interest on different days. By analyzing past data, models for
travel time can be constructed. Reward represents the utility/preference for that
point of interest.

(2) Businesses that involve deliveries (food, equipment, clothing, home fuel, etc.) or
service (technical service associated with repairs, plumbing, television, utilities,
etc.) to customer locations [Golden et al. 1987] provide an ideal category of use
cases for SOPs and DSOPs. The payments that customers make for deliveries or
services can be considered as the reward for visiting a certain vertex. In high de-
mand settings, not all requests can be catered to in the time available (representing
the budget). In addition, since deliveries have to be made by vehicles traveling on
roads, there is uncertainty and time dependence associated with travel times.2

(3) Another category of applications is for traveling sales persons who do not have
enough time to visit all possible locations [Tsiligrides 1984]. The sales person
knows the expected number of sales in each city and wants to maximize total
sales in the time available. SOPs and DSOPs are an ideal model to represent the
guidance problem for traveling salespersons that have to deal with uncertain and
dynamic traffic conditions.

Due to stochasticity and dynamism, there is a risk associated with violating the
deadline for any strategy. Considering robust objectives (i.e., the worst case) yields
very conservative solutions. Therefore, to achieve the right balance between completely
avoiding risk and being overly conservative, we choose a risk-sensitive criterion, where
we compute the maximum reward path where the probability of violating the deadline
is less than a given risk parameter α. Overall, we make the following categories of
contributions:3

(1) We provide heuristic approaches that employ local search to solve SOPs and
DSOPs with a risk-sensitive objective. Specifically, in this technique, we start from
an initial solution and improve upon it iteratively.

(2) We provide a principled approximation technique based on Sample Average Ap-
proximation (SAA) [Pagnoncelli et al. 2009] to formulate risk-sensitive SOPs and

1Please note that each of the point in the list provides a category of applications and not just one application.
2The travel time models required by SOP and DSOP can be constructed by analysing existing traffic data.
3This paper combines our previous work [Varakantham and Kumar 2013; Lau et al. 2012] and extends them
in three major ways: (a) We formulate risk-sensitive DSOPs as a mixed integer linear program. Providing a
linear formulation for DSOPs is significantly difficult than the one for SOPs and hence this is a significant
improvement over the two papers mentioned earlier; (b) We provide a general purpose extension to SAA
that is applicable for domains with continuous valued uncertainties. This helps improve scalability of the
optimization formulation in (a) considerably; (c) We provide experimental results for risk-sensitive DSOPs
on the real world theme park problem.
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DSOPs. In addition to the application of the basic SAA method, we also provide an
improvement to the SAA that is based on aggregation of samples and is applicable
in problems with durational uncertainty.

In order to illustrate the utility of our approaches, we evaluate them on a synthetic
benchmark set introduced by Campbell et al. [Campbell et al. 2011] and also on a real-
world theme park navigation problem, where the travel times are computed from a
year-long data set of travel times at a popular theme park in Singapore. We observe
the following: (1) In small- to medium-scale problems, linear optimization formulations
for solving SOPs and DSOPs provide significant and consistent improvement in solu-
tion quality compared to the local search approach (more than 50% in some synthetic
benchmarks and more than 100% in some real-world problem instances); and (2) On
large-scale problems, our local search approach is able to solve DSOPs quickly, while
our linear optimization based formulations are unable to generate any good quality
solutions.

We now provide the outline for the rest of this paper. In Section 2, we provide a
background on the formal description of OPs, SOPs, and SAA. We then describe for-
mal models for DSOPs along with the risk-sensitive criterion in Section 3. We provide
linear optimization formulations and local search based approaches for solving SOPs
and DSOPs in Sections 4 and 5, respectively. Finally, we provide empirical results of
our approaches on benchmark and real-world SOPs and DSOPs in Section 6 before
discussing related work in Section 7 and summarizing our work in Section 8.

2. BACKGROUND
In this section, we first provide a formal model for Orienteering Problems (OPs) and
Stochastic OPs (SOPs).

2.1. Orienteering Problems (OPs)
An Orienteering Problem (OP) [Tsiligrides 1984] is defined by a tuple
〈G,T,R, v1, vn, H〉, where G = 〈V,E〉 is a graph with sets of vertices V and edges E;
T : vi × vj → R+ ∪ {0,∞} specifies a finite non-negative travel time between vertices
vi and vj if (vi, vj) ∈ E and ∞ otherwise; and R : vi → R+ ∪ {0} specifies a finite
non-negative reward for each vertex vi ∈ V . H refers to the deadline or the time
horizon; v1 and vn are the starting and ending vertices.

A simplified version of our motivating theme park navigation problem, where travel
and queueing times are deterministic and static, can be modeled as an OP. The vertex
v1 corresponds to the entrance of the park, while the rest of the vertices vi correspond
to attractions in the park and sink vn can be any arbitrary vertex in V . Travel times
T (vi, vj) correspond to the sum of the travel time between attractions vi and vj and the
queueing time at attraction vj .

A solution in an OP is a Hamiltonian path over a subset of vertices including source
vertex v1 and sink vertex vn and whose total travel time is no larger than H. Optimally
solving OPs entails finding a solution that maximizes the sum of rewards of vertices
in its path. The source and sink vertices in OPs are often distinct vertices. In the
special case where they are the same vertex, the problem is called an Orienteering
Tour Problem (OTP) [Ramesh et al. 1992]. The difference between both formulations
is small. It is always possible to add a dummy edge with zero travel time between the
source and sink vertices to convert an OP to an OTP.

Researchers have proposed several branch-and-bound methods to solve OPs [La-
porte and Martello 1990] including optimizations with cutting plane methods [Leifer
and Rosenwein 1994; Fischetti et al. 1998]. However, since OPs are NP-hard [Golden
et al. 1987], exact algorithms often suffer from scalability issues. Thus, constant-factor
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approximation algorithms [Blum et al. 2007] are necessary for scalability. Researchers
also proposed a wide variety of heuristics to address this issue including sampling-
based algorithms [Tsiligrides 1984], local search algorithms [Golden et al. 1987; Chao
et al. 1996], neural network-based algorithms [Wang et al. 1995] and genetic algo-
rithms [Tasgetiren 2001]. More recently, Schilde et al. developed an ant colony opti-
mization algorithm to solve a bi-objective variant of OPs [Schilde et al. 2009].

2.2. Stochastic OPs (SOPs)
The assumption of deterministic travel times is not valid in many real-world settings.
Using our motivating theme park navigation problem as an example, the travel time
of patrons depends on numerous factors like fatigue, natural speed of walking, dis-
tractions such as food places, or traveling with children or senior citizens. Repre-
senting such factors accurately and obtaining deterministic travel times is not pos-
sible with current methods. Hence, researchers have extended OPs to Stochastic OPs
(SOPs) [Campbell et al. 2011], where travel times, T (vi, vj) are now random variables
that follow a given distribution, and the goal is to find a path that maximizes the sum
of expected utilities from vertices in the path. The random variables are assumed to
be independent of each other.

Given a strategy π (sequence of vertices to visit), the expected utility of a vertex is
the difference between the expected reward and expected penalty of the vertex. The
expected reward (or penalty) of a vertex is the reward (or penalty) of the vertex times
the probability that the travel time along the path thus far is no larger (or larger) than
H. Formally, the expected utility Uπ(vi) of a vertex vi given a strategy π is given by

Uπ(vi) = Prπ(ai ≤ H)R(vi)− Prπ(ai > H)C(vi) (1)

where the random variable ai is the arrival time at vertex vi (that is, the travel time
from v1 to vi), R(vi) is the reward of arriving at vertex vi before or at H, and C(vi) is
the penalty of arriving at vertex vi after H.

The overall objective of solving SOPs in this case can be formally summarised as:

max
π

∑
i

Uπ(vi)

Campbell et al. have extended OP algorithms to solve SOPs including an exact
branch-and-bound method and a local search method based on variable neighborhood
search [Campbell et al. 2011]. Gupta et al. introduced a constant-factor approximation
algorithm for a special case of SOPs, where there is no penalty for arriving at a vertex
after H [Gupta et al. 2012].

3. MODELS
We now formally describe our extensions to SOPs along with a definition of the risk-
sensitive criterion.

3.1. Dynamic Stochastic OPs (DSOPs)
Stochastic OPs (SOPs) assume independence of travel time distributions across differ-
ent edges. However, in many problems, there is a considerable dependence of travel
times on the arrival time at a vertex. Using our motivating theme park navigation
problem again as an example, the travel time of a patron depends on factors like fa-
tigue and the level of fatigue of a patron increases as the patron spends more time in
the park. Furthermore, waiting time at attractions, which is a key component of travel
time, is dependent on the time of the day. For instance, large roller coasters are not
preferred immediately after lunch.
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To capture dependencies between travel time distributions and represent time-
dependent travel time distributions, we introduce an extension to SOPs called Dy-
namic SOPs (DSOPs). The key difference from SOPs is that the travel time distribu-
tion in a DSOP for moving from vertex vi to vertex vj depends on the arrival time ai
at vertex vi. In this paper, we will assume Ti,j to be a discrete set of distributions,
where each element of the set corresponds to a range of values for ai. Notationally, the
travel time distribution for an arrival time of ai is represented as T aii,j and, hence, the
probability that travel time is u is given by T aii,j(u).

3.2. Risk-Sensitive Criterion
While expected utility is a good metric in general, the approach by Campbell et
al. [Campbell et al. 2011] suffers from many limitations. Firstly, it is a point estimate
solution that does not consider the “risk” profile of the patron. By “risk”, we do not refer
to the term used in a financial sense, but rather the level of conservativeness measured
in terms of the probability of completing the path within the deadline. In other words,
a risk-seeking patron will be prepared to choose a sequence of attractions that have a
large utility, but with a high probability of not completing the path within the dead-
line, compared to a risk-averse patron who might choose a more “relaxed” path with
lower utility. Secondly, the underlying measurement of expected utility is not intuitive
in the sense that a utility value accrued at each attraction does not usually depend on
the probability that the patron arrives at the attraction by a certain time; but, rather,
the utility is accrued when the attraction is visited, and the patron is concerned with
visiting all the attractions (i.e., sum of utilities) within a certain time threshold.

Given the above considerations, we are interested in a problem that allows the pa-
tron to trade off the level of conservativeness (or risk) against the total utility. More
precisely, given a value 0 < α < 1, we are interested in obtaining a path π that max-
imizes the reward obtained while ensuring that the probability of reaching the desti-
nation vertex vn after the deadline H is no larger than α. Or, more precisely,

Prπ(an ≥ H) ≤ α (2)

where an is the arrival time at the last vertex of the path.

4. SOLVING RISK-SENSITIVE SOPS AND DSOPS USING LINEAR OPTIMIZATION
In this section, we provide linear optimization formulations that approximately repre-
sent risk-sensitive SOPs and DSOPs.

4.1. Solving Risk-Sensitive SOPs
We first formulate an SOP with the risk-sensitive criterion (see Section 3.2) as an
optimization problem. We then employ Sample Average Approximation (SAA) to get a
deterministic approximation and we refer to this formulation as MILP-SAA.

For each directed edge (vi, vj), the binary variable πi,j denotes whether the edge
(vi, vj) is in the final path. The random variable Ti,j denotes the travel time for travers-
ing the directed edge (vi, vj). We assume that the underlying distribution for each vari-
able Ti,j is provided as input. The parameter Ri represents the reward of arriving at
vertex vi.

Table I shows a risk-sensitive SOP formulated as a non-linear chance-constrained
mathematical program. We now describe its structure. We designate the source vertex
with id 1 and the sink vertex with id n. The objective function seeks to maximize the
overall reward obtained based on vertices visited. Constraints 4-5 specify that there is
a single incoming and outgoing active edge for each vertex. We refer to constraints 4-6
as flow preservation constraints and henceforth represented as Fπ ≤ 0.
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max
π

∑
i,j

πi,jRi such that (3)

∑
j

πj,i ≤ 1 ∀vi ∈ V (4)

∑
j

πi,j ≤ 1 ∀vi ∈ V (5)

∑
j

πi,j −
∑
j

πj,i =


1 if i = 1

−1 if i = n

0 otherwise
∀vi ∈ V (6)

r1 = 1 (7)
rn = n (8)
ri ≤ rj − 1 + (1− πi,j)M ∀vi, vj ∈ V (9)

Pr

∑
i,j

πi,j Ti,j > H

 ≤ α (10)

πi,j ∈ {0, 1} ∀vi, vj ∈ V (11)
ri ∈ [1, n] ∀vi ∈ V (12)

Table I: A Risk-Sensitive SOP Formulated as a Chance-Constrained Mathematical Program

To ensure that there are no cycles in the path, we introduce a new set of variables
ri for each vertex vi to denote its rank in the final path. For instance, if the rank of
the source vertex is 1, then any vertex connected immediately from the source will
be ranked greater than 1, and so on. This monotonically increasing ranking of vertices
will ensure that no cycles are generated. Constraint 9 models this ranking scheme. The
parameter M is a large constant used to maintain the consistency of the constraint.
We refer to constraints 7-9 as cycle prevention or sub-tour elimination constraints and
henceforth represented as Cr ≤ 0. These ranking based constraints for elimination
of sub-tours were first introduced by Miller et al. [Miller et al. 1960] in their Miller-
Tucker-Zemlin (MTZ) path sequencing formulation. We can also use the separation
algorithms [Fischetti and Toth 1997] that incrementally introduce Subtour Elimina-
tion Constraints (SECs) based on the violations in the current iteration. However, not
all models of SECs are applicable for OPs due to the budget constraint, which entails
that not all vertices will be included in the final solution.

Our formulation for SOPs and DSOPs works with both the above methods of
sub-tour elimination. We chose the ranking method due to ease of implementation.
Constraint 10 is a chance constraint. The total duration of the SOP is denoted as∑
i,j πi,j Ti,j , which is a random variable as each Ti,j is a random variable. The param-

eter H denotes the input deadline. The chance constraint states that the probability
of violating the deadline should be no greater than α ∈ (0, 1), which is another input
parameter. This constraint is non-linear and, in general, a closed form expression is
not readily available. We next show how to compute a deterministic equivalent of this
constraint using SAA in a mixed-integer program.

For each edge of the graph, we generate |Q| samples for the random variable Ti,j ,
where tqi,j denotes the q-th sample. We represent the chance constraint using the fol-
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lowing linear constraints

zq ≥
∑
i,j πi,j t

q
i,j −H

M
∀q ∈ Q (13)

zq ∈ {0, 1} ∀q ∈ Q (14)

where we have introduced auxiliary integer variables zq for each sample q. Using these
auxiliary variables, we can represent violation of the chance constraint for samples as:∑

q z
q

|Q|
≤ α′ (15)

where α′ is a parameter that is set by the user and is generally smaller than the
parameter α as used in constraint 10. The setting of α′ is critical and we will provide
a detailed discussion about it in our experimental results section. To summarize, we
get a deterministic mixed-integer program corresponding to the stochastic program
of Table I by using |Q| SAA samples for each random variable corresponding to an
edge, introducing auxiliary integer variables zq for each SAA sample, and replacing
the stochastic constraint 10 with linear constraints 13-15. The following theoretical
results establish the convergence guarantees for the SAA technique.

THEOREM 4.1 ([PAGNONCELLI ET AL. 2009]). Let x? be the optimal solution and
v? be its quality, x̂N be the solution found with SAA using N samples and v̂N be its
quality, and the parameter α′ = α. Then, v̂N → v? and x̂N → x? as N →∞.

The next theorem provides convergence results regarding the feasibility of the solution
with respect to the chance constraint.

THEOREM 4.2 ([PAGNONCELLI ET AL. 2009]). If x̂N is a feasible solution of the
SAA problem and α′ < α, then the probability that x̂N is a feasible solution of the
actual problem approaches 1 exponentially fast with increasing number of samples N .

4.2. Solving Risk-Sensitive DSOPs
We now provide two optimization formulations, MILP-SAA and MILP-Percentile, that
approximately represent a DSOP with the risk-sensitive objective. MILP-SAA is based
on SAA and, thus, has theoretical convergence guarantees. MILP-Percentile is a
heuristic approximation of MILP-SAA that considerably improves its scalability.

4.2.1. MILP-SAA. Similar to SOPs, for each directed edge (vi, vj), we use the binary
variable πi,j to denote whether the edge (vi, vj) is in the final path and, for each vertex
vi, we use Ri to represent the reward of arriving at that vertex. However, unlike SOPs,
the travel time for traversing the directed edge (vi, vj) depends on the arrival time ai at
the source vertex vi. We thus use T aii,j to denote this travel time distribution. To better
represent the real world, for each vertex vi, instead of assuming that every time point
of arrival at vi leads to a different travel time distribution, we assume that there exists
P intervals of arrival times at a vertex (the P intervals can be different for different
vertices) which lead to a different travel time distribution. We use [šl

p

i , ŝl
p

i ] to denote
the p-th interval. Additionally, for each interval p and vertex vj (where (vi, vj) ∈ E)
pair, there is a travel time distribution associated with it.

Table II shows a risk-sensitive DSOP formulated as a non-linear chance-constrained
mathematical program. The constraints associated with ensuring the feasibility of
path π and prevention of cycles are similar to the ones presented for solving risk-
sensitive SOPs in Table I and are represented as Fπ ≤ 0 and Cr ≤ 0, respectively. The
two sources of non-linearity present in this formulation are constraints 19 and 21. We
now describe how we linearize these two sets of constraints:
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max
π

∑
i,j

πi,jRi such that (16)

Fπ ≤ 0 (17)
Cr ≤ 0 (18)

ai =
∑
j

[
πj,i aj + πj,i T

aj
j,i

]
∀vi ∈ V \ {v1} (19)

a1 = 0 (20)
Pr(an > H) ≤ α (21)
ai ∈ [0,M ] (22)

Table II: Risk-Sensitive DSOP Formulated as a Chance-Constrained Mathematical Program

— Constraint 19: We first address the non-linearity presented in constraint 19. For
ease of explanation, we provide the linearization by assuming that T ajj,i is a contin-
uous variable and not a random variable. We will later relax this assumption by
considering samples of the random variable T ajj,i . Within constraint 19, we have two
non-linear terms, namely πj,i aj and πj,i T

aj
j,i . We account for πj,i aj by introducing a

new variable bj,i that is defined as:

bj,i = πj,i · aj

Intuitively this refers to the following logical constraints:
— If πj,i = 1, then bj,i = aj
— If πj,i = 0, then bj,i = 0
This definition of bj,i can be linearized as follows:

bj,i ≤ aj ∀(vj , vi) ∈ E (23)
bj,i ≤ πj,iM ∀(vj , vi) ∈ E (24)
aj ≤ bj,i + (1− πj,i)M ∀(vj , vi) ∈ E (25)

where M is a large number.
Finding a linear equivalent for the term πj,i T

aj
j,i is more difficult as T ajj,i is dependent

on the arrival time aj :

T̂j,i = πj,i · T
aj
j,i (26)

We exploit the intervals (represented using p) in travel time distribution at each
vertex to find linear equivalent constraints.

T̂j,i =
∑
m

T pj,i ∀(vj , vi) ∈ E (27)

Intuitively, T pj,i should satisfy the following logical constraints (slpj,i = 1 indicates
interval of arrival at j is p):
— If πj,i = 1 ∧ slpj,i = 1, then T pj,i = Dp

j,i

— If πj,i = 0 ∨ slpj,i = 1, then T pj,i = 0
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We linearize these logical constraints as follows:

T pj,i ≤ πj,iD
p
j,i ∀p ∈ P, (vj , vi) ∈ E (28)

T pj,i ≤ sl
p
j D

p
j,i ∀p ∈ P, (vj , vi) ∈ E (29)

Dp
j,i − T

p
j,i ≤ (2− slpj − πj,i)D

p
j,i ∀p ∈ P, (vj , vi) ∈ E (30)

where T pj,i is a variable that is set to the constant travel time Dp
j,i between vertices

vj and vi – if the arrival time at vj is in the interval p and policy πj,i is set to 1 –
and 0 otherwise. The slpj variables indicate whether the arrival time at vj belongs to
interval p, which is achieved through the following linear constraints:

1− slpj ≥
šl
p

j − aj
M

∀p ∈ P, vj ∈ V (31)

1− slpj ≥
aj − ŝl

p

j

M
∀p ∈ P, vj ∈ V (32)∑

p

slpj = 1 ∀vj ∈ V (33)

The overall Mixed Integer Linear Program (MILP) without considering the uncer-
tainty distributions for T ajj,i is provided in Table VII in the online appendix. We next
prove the equivalence of constraints 27-33 to constraint 26.

PROPOSITION 4.3. When we have intervals in travel time distribution, for a given
realization of uncertainties D, constraints 27-33 are equivalent to constraint 26.

Proof. When we have intervals in travel time distribution, for a given realization of
uncertainties, T ajj,i is a piecewise constant function. That is to say:

T
aj
j,i =



D1
j,i, if šl

1

j ≤ aj ≤ ŝl
1

j

D2
j,i, if šl

2

j ≤ aj ≤ ŝl
2

j

. . .

Dp
j,i, if šl

p

j ≤ aj ≤ ŝl
p

j

. . .

Given this piecewise constant representation:

T̂j,i = πj,i · T
aj
j,i =



0, if πj,i = 0

D1
j,i, if šl

1

j ≤ aj ≤ ŝl
1

j ∧ πj,i = 1

D2
j,i, if šl

2

j ≤ aj ≤ ŝl
2

j ∧ πj,i = 1

. . .

Dp
j,i, if šl

p

j ≤ aj ≤ ŝl
p

j ∧ πj,i = 1

. . .

Constraints 31-33 ensure right interval for aj amongst

{[šl1j , ŝl
1

j ], [šl
2

j , ŝl
2

j ], . . . }

Constraints 29-30 ensure right assignment for the interval variable, slpj .
Constraint 28 captures the assignment corresponding to the value of πj,i.
Constraint 27 combines the output from ensuring all conditions are met.
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We can verify that constraints 27-33 represent the above piecewise constant func-
tion by simple substitution of values for slpj and πj,i variables. �
We now relax the assumption that T ajj,i is a realization and not a random vari-
able. For this, we draw a set of |Q| samples, ξ = {ξ1, · · · , ξq, · · · , ξ|Q|}, where
ξq = {T p,qj,i }vj∈V,vi∈V,p∈P comes from the distributions {T pj,i}vj∈V,vi∈V,p∈P . In this rep-
resentation, T p,qj,i is a number indicating the travel time if you arrive in interval p
at vertex vj according to sample q. Intuitively, each sample ξq contains a travel time
value obtained from each of the distributions Tj,i(p) corresponding to every edge
(vj , vi) and arrival interval p at vertex vj . To account for the samples, all variable
groups associated with aj , bj,i, T pj,i will now have an index associated with the sam-
ple q.

— Constraint 21: As with SOPs, we linearize the chance constraint by finding the de-
terministic equivalent using SAA. More specifically:

zq ≥ aqn −H
M

∀q ∈ Q (34)

zq ∈ {0, 1} ∀q ∈ Q (35)

where we have introduced auxiliary integer variables zq for each sample q. Using
these auxiliary variables, the constraint 21 is represented as:∑

q z
q

|Q|
≤ α′ (36)

where α′ is the parameter that is set by the user and is smaller than the parameter
α used in constraint 21. The updated MILP is provided in Table VIII in the online
appendix. We call this formulation MILP-SAA.

4.2.2. MILP-Percentile. While MILP-SAA is a principled mechanism to solve a risk-
sensitive DSOP, it cannot scale to the real-world theme park problems of interest in
this paper.4 We now describe a general purpose extension to SAA that can be employed
in problem domains where uncertainty is associated with continuous values such as
travel times, activity durations, etc. The broad idea is to summarize the set of samples
ξ used in SAA with a few summary samples. We now describe the MILP-Percentile,
where we summarize the sample set ξ using a (1 − α′) percentile sample. That is to
say, instead of solving the MILP with |Q| samples, we solve it for one sample, in which
travel time on edges are obtained by computing (1 − α′) percentile duration over all
|Q| samples. MILP-Percentile is equivalent to the one provided in Table VII with the
travel times Dp

j,i obtained by computing (1− α′) percentile travel times on edge (vj , vi)
in the sample set ξ. That is to say:

Dp
j,i = Percentile({Dp,1

j,i , D
p,2
j,i , · · · , D

p,|Q|
j,i }, (1− α

′)) ∀j, i, p

The key intuition for considering “Percentile” as the summarisation criterion is to
ensure that the chance constraint (also a percentile) is not violated. Since the per-
centile is taken at the level of individual edges, it does not theoretically guarantee
satisfaction of the percentile constraint at the level of the entire problem. However, as
we demonstrate in our experimental results, MILP-Percentile was able to scale to our
real world problem instances and also obtained solutions that were significantly better
than the local search mechanism.

4We were unable to generate a feasible solution within the threshold time limit of 1000 seconds.
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5. SOLVING RISK-SENSITIVE SOPS AND DSOPS USING LOCAL SEARCH
We now describe a local search algorithm to solve SOPs and DSOPs.We start from a
greedy solution and iteratively make incremental updates to the solution and evaluate
the new solution until there are no more updates possible or a maximum number of
iterations has been reached. While this is not a principled approximation approach,
local search approaches typically converge to good quality solutions efficiently (unlike
optimization methods).

5.1. Solving Risk-Sensitive SOPs
For ease of explanation of the local search algorithm, we first describe a brute force
optimal approach for solving SOPs. We consider a depth-first branch-and-bound algo-
rithm, where the root of the search tree is the source vertex and the children of a vertex
are all the unvisited vertices minus the sink vertex. The branch of an arbitrary vertex
thus represents the path from the source vertex to that vertex. The value of a vertex is
the sum of rewards of all vertices along its branch. The algorithm prunes the subtree
of a vertex if it fails to satisfy our risk-sensitive criterion. For example, assume that
a vertex vk is on the branch π = 〈v1, v2, . . . , vk〉, where vertex vi is on the i-th position
on the branch. The algorithm prunes the subtree rooted at vertex vk if the condition in
constraint 2 is not satisfied if one appends the sink vertex to the end of the path. The
algorithm returns the vertex with the largest value and the branch of that vertex with
the sink vertex appended at the end of the path as the best solution that satisfies the
risk-sensitive criterion.

As expected, the branch-and-bound algorithm suffers from scalability issues as the
size of the search tree is exponential in the number of vertices in the graph. We thus
introduce a local search algorithm that is based on the standard two-phase approach –
a construction heuristic to generate an initial solution followed by local improvements
on that solution.

5.1.1. Construction Heuristic. The construction heuristic is a greedy insertion algorithm
that inserts the best unvisited vertex at the best position in the current path according
to a given metric. The algorithm begins with the path that starts at the source vertex
and immediately exits at sink vertex, and it terminates when it can no longer insert
any vertex at any position without violating the condition in constraint 2.

We use the following metric to evaluate the value of inserting vertex vi at position
p: ∆R

1+∆Pr , where ∆R and ∆Pr are the gain in reward and probability, respectively, for
inserting vertex vi at position p. Thus, ∆R = Ri, which is the reward of vertex vi, and
∆Pr = Pr′(an ≤ H)− Pr(an ≤ H), where Pr′(an ≤ H) and Pr(an ≤ H) are the probabil-
ities of arriving at the sink vertex before and after insertion, respectively. Finally, we
add 1 to the gain in probabilities such that the denominator is greater than 0.

This metric is motivated by similar metrics in knapsack problems, namely the utility
of an item is the ratio between the reward and size of that item [Nauss 1976]. We also
tried four other variants of the above metric, namely (1) 1

1+∆Pr , (2) ∆R, (3) (∆R)2

1+∆Pr ,
(4) ∆R√

1+∆Pr
, where we ignored the effects of rewards in (1) and probabilities in (2), and

we amplified the effects of rewards in (3) and probabilities in (4). However, our chosen
metric was shown to outperform these four variants empirically. For easy accessibility,
we provide all five metrics in Table III.

5.1.2. Local Improvements. We use a hybrid approach that consists of a variable neigh-
borhood search combined with simulated annealing to locally improve our initial so-
lution found by the construction heuristic. Algorithm 1 shows the pseudocode of this
algorithm. After constructing the initial solution (line 1), the algorithm iteratively runs
the following four phases until the maximum number of iterations is reached (line 6):
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Metric Name M1 M2 M3 M4 M5
Explanation ∆R

1+∆Pr
1

1+∆Pr ∆R (∆R)2

1+∆Pr
∆R√

1+∆Pr

Table III: Metrics corresponding to different “neighborhoods” in variable neighbour-
hood search.

ALGORITHM 1: Local Search Algorithm
/* Generate Initial Solution */

1 currentPath = ConstructionHeuristic()
/* Make Local Improvements */

2 bestPath = currentPath
3 numIterNoImprove = 0
4 currentMetric = pick randomly from {M1, M2, M3, M4, M5}
5 T = starting temperature
6 for iterations = 1 to maxIterations do
7 T = T ·∆T
8 Z = numIterNoImprove

2·maxIterNoImprove

/* Perform 2-Exchange Operation on currentPath */
9 currentPath = 2-Exchange(currentPath)

/* Remove Vertices from currentPath */
10 while currentPath is infeasible OR rand() ≤ Z do
11 remove the second last vertex from currentPath
12 end

/* Insert Vertices to currentPath */
13 neighborPath = Insert(currentPath, currentMetric)

/* Update currentPath and bestPath */
14 ∆R = neighborPath.reward− currentPath.reward
15 if ∆R > 0 OR rand() ≤ e∆R/T then
16 currentPath = neighborPath
17 end
18 if currentPath.reward > bestPath.reward then
19 bestPath = currentPath
20 numIterNoImprove = 0
21 else
22 numIterNoImprove = numIterNoImprove + 1
23 if numIterNoImprove > maxIterNoImprove then
24 currentMetric = pick randomly from [{M1,M2,M3,M4,M5} \ currentMetric]
25 numIterNoImprove = 0
26 end
27 end
28 end
29 return bestPath

Phase 1: If the path contains at least two vertices (not including the source and sink
vertices), then the algorithm performs a 2-Exchange operation, that is, it randomly
swaps two of these vertices (line 9).

Phase 2: If the path is not feasible, that is, it does not satisfy constraint 2, then the
algorithm repeatedly removes the second last vertex until the path is feasible. (The
algorithm does not remove the last vertex because it is the sink vertex.) Once the
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path is feasible, the algorithm repeatedly removes the second last vertex proba-
bilistically (lines 10-12).5

Phase 3: The algorithm repeatedly inserts unvisited vertices greedily similar to the
construction heuristic (line 13). The difference here is that the metric used can be
one of five different metrics, either the metric chosen for the construction heuris-
tics or one of its four variants described above. The algorithm starts by choos-
ing one of the five metrics randomly (line 4). If there are no improvements in
maxIterNoImprove iterations, the algorithm chooses a new different metric ran-
domly (lines 24-25). These different metrics correspond to the different “neighbor-
hoods” in our variable neighborhood search.

Phase 4: The algorithm then updates the current path to the new neighboring path,
which is a result from inserting unvisited vertices in Phase 3, if the new path is a
better path or with a probability that depends on the simulated annealing temper-
ature (lines 14-17).

5.1.3. Approximating the Completion Probability of a Path. In a SOP, distribution for the
completion probability of a path is equivalent to the sum of the probability distribu-
tions for travel times on the edges in the path. For the probability distributions (asso-
ciated with travel times on individual edges) of interest in this paper, namely normal
and gamma distribution, the sum of distributions over the edges in a path remains
normal and gamma distributions, respectively. Hence, computing the completion prob-
ability for a path is a trivial operation. For a normal distribution:∑

i

N (µi, σ
2
i ) = N

(∑
i

µi,
∑
i

σ2
i

)
Similarly, for a gamma distribution:∑

i

Γ(ki, θ) = Γ

(∑
i

ki, θ

)
For other complex distributions, including the case for gamma distribution, where

θ for individual edges is different, we can employ a sampling-based approach. That is
to say, we generate a large number of samples from the distributions and check for
the completion probability within the deadline by aggregating the result over a large
number of samples.

5.2. Solving Risk-Sensitive DSOPs
The local search algorithm described for risk-sensitive SOPs can also be used to solve
risk-sensitive DSOPs. The only change necessary is the computation of the completion
probability of a path, which we now elaborate.

We describe two ways of approximating the completion probability Pr(an ≤ H),
which is used in constraint 2 and the construction heuristics. Given the order π =
〈v1, v2, . . . , vk, vn〉, we can use the following expression to compute Pr(an ≤ H):

Pr(an ≤ H) =∫ H

an=0

∫ an

ak=0

∫ ak

ak−1=0

· · ·
∫ a2

a1=0

T akk,n(an − ak)T
ak−1

k−1,k(ak − ak−1) · · ·T a11,2(a2 − a1)

d(a1) d(a2) . . . d(ak) d(an) (37)

5The rand() function returns a random number in [0,1].
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where an is the arrival time at the sink vertex, and we capture the dependencies on
arrival times at each of the vertices by reducing the range of feasible arrival times (for
the integrals) based on the previous activities in the order of vertices. Unfortunately,
the computation of the expression is expensive since the integrals have to be computed
sequentially. To provide an intuition for the time complexity, computing triple integrals
takes around 30 minutes with the exponential distribution (the most scalable of all
distributions with integration) on our machine using the Matlab software. To address
this issue of scalability, we employ two approximation approaches – a sampling-based
approach and a matrix-based approach.6 In the sampling-based approximation, we
approximate the completion probability Pr(an ≤ H) of a path by randomly sampling
the travel time distributions for each edge along the path, and checking if the arrival
time an at the last vertex exceeds H. Alternatively, in matrix-based approximation,
we exploit the fact that the dependencies are primarily due to arrival time at a vertex
and not on the entire order of vertices before the current vertex. At a higher level, it
implies that the underlying problem is Markovian and, hence, we can decompose the
expression of Equation 37. We also make conservative estimates of the probability such
that we can provide theoretical guarantees on whether constraint 2 is truly satisfied.

6. EXPERIMENTAL RESULTS
We now show empirical comparisons between linear optimization formulations solved
using CPLEX and our local search algorithm for both risk-sensitive SOPs and DSOPs
on a synthetic benchmark as well as a real-world theme park data set. We ran our
experiments on a 1.8GHz Intel i5 CPU with 8GB memory.

We used the following parameters for the local search algorithm:
maxIterNoImprove = 50, maxIterations = 1500, T = 0.1, and ∆T = 0.99. We di-
vided each travel time distribution to 100 ranges for the matrix-based computations
and used 1000 samples for the sampling-based computations. We tried a large number
of combinations of parameters and these settings provided the best tradeoff between
runtime and solution quality.

We used the following parameters for our optimization-based MILP-SAA algorithm:
The number of samples |Q| = 〈25, 30, 35, 40〉, and the number of sample sets generated
for each problem is 15. This corresponds to the number of initial random seeds used to
sample the travel time from the gamma distribution.

6.1. SOP Results
We measure the performance of our approach with respect to the solution quality and
the probability of violating the deadline by varying various problem parameters.

6.1.1. Synthetic Benchmark Set. We use the graph structures introduced by [Campbell
et al. 2011] and create our synthetic benchmark by varying the following parameters:

— We vary the number of vertices |V | = 〈20, 32, 63〉 and set the reward Ri obtained
from visiting a vertex vi to a random integer between 1 and 10.

— We vary the probability of constraint violation α = 〈0.3, 0.25, 0.2, 0.15, 0.11〉 (see
Equation 10). Corresponding to each setting of α, we use the parameter α′ =
〈0.2, 0.15, 0.1, 0.05, 0.01〉 (see Equation 15).

— We employ a gamma distribution f(x; k, θ) for modeling the travel time of an edge
or the random variable Ti,j , where

f(x; k, θ) =
1

θk
1

Γ(k)
xk−1e

x
θ , x > 0, k, θ > 0 (38)

6Details provided in the online appendix.
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Fig. 1: Plots showing accumulated reward by our approaches as deadline percentage is varied.
In all three graphs: x-axis represents the deadline percentage. Primary y-axis represents the
reward accumulated and secondary y-axis represents the probability of failure. The two bars
correspond to the reward (primary y-axis) accumulated by Local Search and MILP-SAA meth-
ods. The two lines correspond to the desired (Alpha) and actual (Beta) probability of failure
(secondary y-axis) values. We also provide error bars representing variance on reward values
across multiple runs.

We randomly set k for each edge and vary θ = 〈1, 2, 3〉.
— Finally, we vary the deadlines H by setting it to a fraction of the total time required

to visit all the vertices. We use the following fractions: 〈20%, 25%, 30%, 35%〉.
While we obtained results for all combinations of parameters, we only show a repre-

sentative set of results where we varied only one parameter and set the other param-
eters to their default values:

θ = 1; α = 0.3; α′ = 0.2; H = 25% · total time; |Q| = 40 (39)

The local search algorithm always provides a solution with the specified limit α.
For the MILP-SAA algorithm, we empirically determine the actual probability of con-
straint violation for a particular solution π, say β, by generating 1000 complete samples
for edge duration and computing the fraction of samples for which the solution violated
the deadline H. Ideally, the probability β should be less than α for the solution to be
valid, which is indeed the case in most problem instances.

Runtime. In this paper, we do not provide detailed results on runtime because both
approaches were able to solve all the problems very quickly. The local search algorithm
was able to obtain solutions on the most difficult of problems (i.e., 63 vertices, H =
20%, |Q| = 70, α′ = 0.01, θ = 3) within a few seconds. On the other hand, the MILP-SAA
algorithm was able to solve the most difficult problems within 10 minutes.

Deadline H. Figure 1 shows the effect of varying the deadline H on the overall re-
ward for the three graph configurations. The x-axis shows the deadline as a percentage
of the total time required to visit all vertices. The primary y-axis (left side) indicates
the reward obtained and the secondary y-axis (right side) indicates the probability of
violating the deadline. The bars indicate the reward obtained by the local search and
MILP-SAA algorithms. In addition, the two lines represent the probability of violating
the deadline. The legend ‘Alpha’ denotes the α parameter and ‘Beta’ denotes the em-
pirically computed probability of constraint violation for the MILP-SAA solution using
1000 samples. We make the following observations:

(1) In general, MILP-SAA finds paths with larger rewards compared to local search.
In addition, this improvement in reward is significant in the 63-vertex case (see
Figure 1(c)). For example, when the deadline percentage is 25%, the improvement
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(c) |V | = 63

Fig. 2: Plots showing accumulated reward by our approaches as number of samples |Q| is varied.

in reward is approximately 100, indicating approximately a 50% improvement over
local search. This improvement also implies that MILP-SAA finds paths that tra-
verse an additional 10 vertices in the worst case and 20 vertices in the average
case (since rewards are uniformly drawn from the range [1,10]) compared to the
paths found by local search.

(2) In most of the cases, the variance in reward of paths found by local search is much
higher than those found by MILP-SAA. This observation is important, especially
for the few cases where local search finds better paths (on the average) than MILP-
SAA. Thus, MILP-SAA is more consistent in finding paths with good quality.

(3) As the deadline percentage increases, the problem becomes less constrained and
the difference in the reward of the paths found by the two approaches reduces,
which is to be expected.

(4) As the deadline percentage decreases, the problem is more constrained and, hence,
the actual probability of the paths found by MILP-SAA violating the deadline (β)
increases. Specifically, when the deadline percentage is 20%, the 32- and 63-vertex
problems are difficult to solve when MILP-SAA employs 40 samples only. This dif-
ficulty is reflected in the β values, which are greater than the α = 0.3 threshold.
As we show later in this section, this can be addressed by increasing the number
of samples (> 40) or reducing the α′ value employed (< 0.1).

Number of Samples |Q|. Figure 2 shows the effect of varying the number of SAA
samples |Q| on the overall reward for the three graph configurations. We make the
following observations:

(1) As the number of SAA samples increases, the β value decreases. This behavior
is expected as with the increasing number of samples, the SAA approximation
becomes tighter.

(2) The reward of the paths found by MILP-SAA remains similar independent of the
number of samples. This behavior shows that MILP-SAA can find good paths that
minimize the probability of violating the deadline even with increased problem
complexity with the higher number of samples.

Deadline Violation Probability α′ and Scale Parameter θ. Figures 3 and 4 show the
effect of varying the violation probability α′ and the scale parameter θ of the gamma
distribution, respectively, on the overall reward for the three graph configurations.
As expected, as α′ increases, the empirical deadline violation probability β increases.
However, the increase in reward is minimal for increasing α′ values. This behavior
shows that a smaller value of α′ is preferable to limit the probability of violating the
deadline.
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Fig. 3: Plots showing accumulated reward by our approaches as α′ is varied.
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Fig. 4: Plots showing accumulated reward by our approaches as scale parameter θ is varied.
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Fig. 5: Solution quality comparisons on real-world theme park dataset.

As value of the θ parameter increases, local search on average performs better (al-
beit with higher standard deviations) than MILP-SAA in smaller problems (20- and
32-vertex problems). However, on the 63-vertex problems, we see that MILP-SAA is
significantly better over all values of θ.

6.1.2. Real-World Theme Park Problem. Our real-world example is based on a major
theme park in Singapore. This theme park has 21 attractions and, hence, there are
21 vertices in our SOP and DSOP models. Travel time distributions on edges for SOP
and DSOP are computed based on real data of 2 components: (a) 1 year of waiting time
data for all attractions (provided at intervals of 15 minutes); and (b) actual observa-
tions of time taken to travel between attractions of people at the park. Rewards based
on approximate preferences of users for attractions are normalised to be between 0-
100.
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For travel time distribution on edges of SOP, we fit a gamma distribution with scale
parameter θ and shape parameter k such that µ ≈ kθ and σ2 ≈ kθ2, where µ and σ2

are the mean and variance, respectively, of the data points on sum of travel time and
queueing time.

Figure 5 shows the effect of varying the deadline H, number of SAA samples |Q|,
and deadline violation probability α′ on the overall reward for this real-world theme
park dataset. We make the following observations:

(1) In all cases except one, MILP-SAA finds paths with larger rewards compared to
local search. The exception is when the deadline percentage is 35% or when the
problem is only weakly constrained. In some cases, the improvement in reward of
MILP-SAA over local search is more than 100%. For example, when the deadline
percentage is 20%, the improvement in reward is more than 125 and the empirical
probability of violating the deadline β is well below the required probability α.

(2) Similar to the synthetic benchmark, the standard deviation in the rewards of paths
found by local search is significantly larger that that found by MILP-SAA.

(3) MILP-SAA requires only a small number of samples to obtain sufficiently stable
solutions where the empirical probability of violating the deadline β is less than
the required probability α.

(4) As the violation probability α′ employed by MILP-SAA increases, the overall re-
ward accumulated and probability of violating the deadline increases, which is to
be expected.

In summary, in both the synthetic and the real-world dataset, it is clear that the
MILP-SAA algorithm outperforms the local search algorithm across a large parameter
space. Thus, it should be the preferred algorithm for solving risk-sensitive SOPs.

6.2. DSOP Results
We now describe our results when both the synthetic and the real-world theme park
datasets are modeled as risk-sensitive DSOPs. While local search was able to generate
results for both synthetic and real-world problems, MILP-Percentile was only able to
generate solutions for the real-world theme park problem within the set time limit of
1000 seconds. MILP-Percentile either ran out of memory or was unable to find solu-
tions within the 1000 seconds for the synthetic data set. The key reason is the large
number of intervals (= 100) considered for each edge.

6.2.1. Synthetic Dataset Results. We use the same settings as described in Section 6.1.1
except for the following:

— We have a gamma distribution for each time interval for each edge instead of only a
single distribution for each edge.

— We bound the possible values of k in the gamma distribution such that the shape of
the distributions across time ranges do not vary significantly.

— We vary the deadline H = 〈20, 40, 60, 80, 100〉 instead of the percentage-based set-
tings because computing the maximum completion time was computationally too
expensive.

Since MILP-SAA and MILP-Percentile both failed to find feasible solutions within
the time limit, we focus on the results of the local search algorithm only. We report
only the results for the 32-vertex graph as the trends are similar across all graphs.
Table IV shows our results for the construction heuristic algorithm (labeled CH) and
local search algorithm (labeled LS), where we calculate the completion probability of a
path (see Equation 2) using both the matrix-based approach and the sampling-based
approach. We report the completion probability of the best path found by the local
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(a) Results averaged across all deadlines H and risk parameters α

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
θ = 1 87 88 (0.50) 0.5 568 876 1033 (18.75) 5.3 2443
θ = 2 129 134 (1.65) 0.8 987 695 792 (17.03) 2.7 1477
θ = 3 123 133 (3.97) 0.8 904 533 569 (6.63) 1.3 716

(b) Results averaged across all scale parameters θ and risk parameters α

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s) Rewards Runtimes (s)

CH LS CH LS CH LS CH LS
H= 20 28 28 (0.00) 0.2 238 193 220 (12.71) 0.2 221
H= 40 94 94 (0.11) 0.5 520 432 498 (15.00) 0.8 690
H= 60 138 141 (1.43) 0.8 862 657 732 (11.10) 2.0 1303
H= 80 155 160 (2.00) 0.9 1050 847 952 (11.35) 3.7 1858
H=100 185 196 (4.12) 1.3 1485 1008 1126 (10.84) 5.7 2208

(c) Results averaged across all deadlines H and scale parameters θ

Matrix-based Approach Sampling-based Approach
Rewards Runtimes (s)

PM PS
Rewards Runtimes (s)

PM PSCH LS CH LS CH LS CH LS
α= 0.1 1 1 (0.00) 0.1 168 1.00 1.00 507 605 (18.48) 1.7 1077 0.17 0.90
α= 0.2 46 46 (0.00) 0.2 332 0.90 0.99 585 669 (13.98) 2.1 1186 0.15 0.81
α= 0.3 113 119 (3.38) 0.6 768 0.79 0.99 643 711 (10.03) 2.6 1270 0.13 0.73
α= 0.4 194 197 (1.23) 1.1 1248 0.66 0.97 679 757 (10.81) 2.8 1376 0.09 0.63
α= 0.5 246 256 (3.05) 1.6 1640 0.54 0.95 725 785 (7.71) 3.3 1371 0.07 0.55

Table IV: Experimental Results for Synthetic Datasets

search algorithm using the matrix-based approach (labeled PM ) and the sampling-
based approach (labeled PS). We also report the percentage of improvement in the
reward of the path found by the local search algorithm compared to the path found by
the construction heuristic algorithm (denoted in parentheses beside the local search
rewards). We make the following observations:

(1) Table IV(a) shows that for the matrix-based approach, the solution rewards in-
crease between θ = 1 and θ = 2, and remain relatively unchanged for θ = 3. As θ
increases, the variance of the gamma distributions increases as well. When θ = 1,
only very few ranges have non-zero transition probabilities. As a result, adding an
additional edge to a solution can result in a significant decrease in completion prob-
ability. With larger values of θ, more ranges have non-zero transition probabilities,
but the number of ranges and transition probabilities do not change much with in-
creasing values of θ. Thus, the path length and, consequently, reward and runtime
usually increase as θ increases from 1 to 2, but remains relatively unchanged for
θ = 3. The runtime depends on the path length because the number of positions to
check to find the best position to insert a vertex, which is done by the construction
heuristic algorithm and phase 3 in the local improvement phase, depends on the
path length.
On the other hand, for the sampling-based approach, the solution rewards decrease
as θ increases. Since the sampling probabilities are relatively accurate representa-
tions of the true probabilities, as the variance increases, adding an additional edge
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to a solution can result in a significant decrease in completion probability. Thus,
the path length and, consequently, reward and runtime typically decreases as θ
increases.

(2) Table IV(a) also shows that as θ increases, for the sampling-based approach, the
improvement of the local search algorithm over the construction heuristic algo-
rithm decreases. The reason is that as the variance of the gamma distributions in-
creases, there is less distinction between the different gamma distributions. Thus,
many of the neighboring solutions are very similar to the solution found by the con-
struction heuristic algorithm. For the matrix-based approach, the improvements
are all negligible. The path lengths are short (with 1-3 vertices excluding the source
and sink vertices), and, thus, there is not much room for improvement.

(3) Tables IV(b) and IV(c) show that as H or α increases, the solution reward increases
for both matrix- and sampling-based approaches, which is to be expected. Similarly,
the runtime also increases since the number of positions to check to find the best
position to insert a vertex also increases.

(4) Table IV(c) shows that the completion probabilities PM and PS are all no less than
1 − α for the matrix- and sampling-based approaches, respectively, which is to be
expected.

We observe that the problems in this dataset are relatively easy as all gamma distri-
butions have the same scale parameter and their means satisfy the triangle inequality.
Thus, we modified the dataset to increase its difficulty in the following ways: (a) we
choose the scale parameter θ of the gamma distributions for each edge randomly be-
tween 1 and 4 such that not all edges have distributions with the same scale parameter,
and (b) we change the shape parameter k of the gamma distributions for some subset
of edges such that their means no longer satisfy the triangle inequality. We also per-
formed experiments on this more difficult synthetic datasets. We were able to make
the same observations here as with the simpler dataset with the exception that the
improvements of the local search algorithm over the construction heuristic algorithm
was up to 30% as opposed to 18% earlier.

Overall, using the sampling-based approach, the local search algorithm provides
reasonably better solutions compared to the construction heuristic algorithm. How-
ever, it is not guaranteed that these solutions are feasible, that is, they satisfy Equa-
tion 2. However, the feasibility likelihood increases with the number of samples. Thus,
this approach is better suited for users without strict feasibility requirements. On the
other hand, solution feasibility is guaranteed for algorithms using the matrix-based
approach. Unfortunately, the local search algorithm fails to reasonably improve on the
solutions found by the construction heuristic algorithm. Thus, the construction heuris-
tic algorithm using the matrix-based approach is better suited for users with strict
feasibility requirements.

6.2.2. Real-World Dataset Results. For the real-world theme park dataset, we also use
the same settings as described in Section 6.1.2 except for the following:

— The total number of intervals in the real world example is 11, corresponding to the
operation hours of the theme park (9:00 AM - 8:00 PM).

— We fit gamma distributions to the data collected for each time interval on each edge
instead of fitting a single distribution to the data collected for the entire day on each
edge.

— We vary the deadline H = 〈2, 4, 6, 8, 10〉 (measured in hours) instead of the
percentage-based settings because computing the maximum completion time was
computationally too expensive.
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Fig. 6: Solution Quality Comparisons on Real-World Theme Park (Peak Days) Dataset
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Fig. 7: Solution Quality Comparisons on Real-World Theme Park (Non-Peak Days) Dataset

— We segment our data points into two categories, peak days and non-peak days,7 and
present results for both categories.

Since MILP-SAA failed to find feasible solutions within the time limit, we focus on
the results of MILP-Percentile and the local search algorithm only. We consider the
following settings for the MILP-Percentile algorithm:

— We vary the number of samples from the following values: 〈15, 20, 25, 30, 35〉.
— We vary α′ among the values: 〈0.1, 0.2, 0.3, 0.4, 0.5〉.
— The result for each problem is averaged over 15 sample sets, where each sample set

contains the “number of samples” mentioned above.
— In computing the probability of failure for a given policy computed by MILP-

Percentile, we use 1000 complete samples.

Figures 6 and 7 show the effect of varying the deadline H and deadline violation
probability α′ on the overall reward for the peak days and non-peak days datasets,
respectively. We make the following observations:

(1) In all cases, MILP-Percentile finds paths with significantly larger rewards than
local search.8 This difference in rewards indicates that the paths found by MILP-
Percentile allow theme park visitors to visit at least 4 more attractions than the
paths found by local search.

(2) The empirical probability of violating the deadline β is less than the required prob-
ability α in all cases.

7Peak days are Fridays, Sundays and Mondays according to our theme park operator.
8The results for α′ = 0.4 and α′ = 0.5 have similar trends.
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Number of Intervals Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Hoirizon = 10
11 757.2 882.8 1014.4 1058.4 1072
6 616.4 819.4 1018.2 1072 1072
4 592.4 808.2 1014.2 1072 1072
3 592 806.3 1025 1072 1072

Local Search 474 485 507 549 558

Table V: Solution Quality as Number of Intervals is Reduced (Peak Days).

Number of Intervals Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Horizon = 10
11 1109.8 1141 1141.0 1141.0 1141.0
6 806.8 1047 1141 1141 1141.0
4 753.8 1090.4 1141 1141 1141.0
3 727.6 1044.4 1131.2 1141 1141.0

Local Search 620 620 620 621 624

Table VI: Solution Quality as Number of Intervals is Reduced (Non Peak Days).

(3) As we increase the required probability α and deadline H, as expected, the reward
obtained by local search and MILP-Percentile increases until the maximum possi-
ble reward. Additionally, as the deadline H increases, the empirical probability of
failure β decreases. The reason is that MILP-Percentile found the same path after
a certain deadline. Thus, increasing the deadline only reduces the probability of
failure.

(4) Reward obtained on non-peak days is higher than the corresponding case on peak
days. This is because non-peak days have smaller waiting times at the attractions,
which allows for more attractions to be visited before the deadline.

7. RELATED WORK
There are four threads of research that are of relevance to the research presented in
this paper:9

— Deterministic, Stochastic, and Dynamic Orienteering Problems: The differ-
ence between our work and existing work in this space [Laporte and Martello 1990;
Arkin et al. 1998; Vansteenwegen et al. 2011; Campbell et al. 2011; Li 2012; Ilhan
et al. 2008] is that they seek to maximize the expected reward without considering
risk sensitivity and also they assume that the traveling time between vertices is
time independent.

— Stochastic and Dynamic Traveling Salesman and Purchaser Problems: Re-
searchers have not considered stochastic [Seungmo and Ouyang 2011] and dy-
namic [Angelelli et al. 2011a; Angelelli et al. 2011b] variants of TPP together. These
differences coupled with the lack of a budget in TPP provide distinguishing factors
for our contributions.

— Risk-Sensitive Decision Making: Our approach of defining a risk-sensitive mea-
sure that allows the user to specify a level of risk (failure tolerance) is along the
lines of using chance constraints to model and account for different risk preferences.
While it has been applied to solve planning and scheduling problems [Lehmann
1955; Hanoch and Levy 1969; Markowitz 1952; Miller and Wagner 1965; Prekopa
2003; Beck and Wilson 2007; Chen et al. 2008; Fu et al. 2012], to the best of our
knowledge, it has not been applied to solve OPs.

9Please refer to the detailed related work in the online appendix.
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— Graphical Models and Markov Decision Processes: SOPs also bear some sim-
ilarity with Markov random fields (MRFs) [Wainwright and Jordan 2008] and
Bayesian networks [Russell and Norvig 1995]. The goal in these two models is to
compute the maximum a posteriori (MAP) assignment, which is the most probable
assignment to all the random variables of the underlying graph in MRFs [Wain-
wright and Jordan 2008; Sontag et al. 2011] and Bayesian networks [Park and
Darwiche 2003; Huang et al. 2006; Yuan and Hansen 2009]. The main difference
between MAP assignment problems and SOPs is that MAP assignment problems
are inference problems while SOPs are planning problems.
While there exists research in Markov decision processes (MDPs) [Puterman 1994]
that individually addresses continuous state spaces [Marecki and Tambe 2008;
Boyan and Littman 2001; Li and Littman 2005], open-loop policies [Weinstein and
Littman 2013; Yeoh et al. 2013], constrained MDPs [Altman 1999] and risk-sensitive
objectives [Yu et al. 1998; Liu and Koenig 2008; Hou et al. 2014], we are not aware
of research that considers all four aspects at the same time.

8. SUMMARY AND FUTURE WORK
Orienteering Problems (OPs) and Stochastic OPs (SOPs) are rich models that have
been shown to be useful in modeling various applications such as a modified travel-
ing salesman problem [Tsiligrides 1984] and logistic applications [Golden et al. 1987].
However, they are unable to accurately capture characteristics of our problem of inter-
est, namely the theme park navigation problem, where patrons need to plan their path
in a theme park to visit as many attractions as possible before a given deadline.

In this paper, we extend SOPs to Dynamic SOPs (DSOPs), where traveling times be-
tween attractions differ based on the time of the day. Additionally, we introduce a risk-
sensitive criterion for SOPs and DSOPs, where the goal is now to find a path that can be
completed before the deadline with at least a probability α. We also provide two solu-
tion approaches to solve these problems: (1) an optimization-based approach that uses
non-linear chance constraints as well as its linearized version via the Sample Average
Approximation (SAA) approach; and (2) a local search based approach that is based on
variable neighborhood search. Experimental results on our synthetic and real-world
theme park datasets show that the optimization-based approach consistently finds
better solutions than the local search algorithm across a large space of problem pa-
rameters for risk-sensitive SOPs. However, the optimization-based approach could not
scale to the more complex risk-sensitive DSOPs unlike the local search algorithm.

Future work includes investigating the use of Constrained MDPs [Altman 1999; Dol-
gov and Durfee 2005]. Constrained MDPs cannot be used off the shelf as they enforce
all constraints (e.g., the total traveling time of a path is no larger than a threshold) as
hard constraints that cannot be violated. We would like to investigate if one can re-
lax that hard constraint in a manner similar to SAA to model and solve risk-sensitive
SOPs and DSOPs.
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