
Exploiting Anonymity and Homogeneity in Factored
Dec-MDPs through Precomputed Binomial Distributions

Rajiv Ranjan Kumar and Pradeep Varakantham
School of Information Systems, Singapore Management University

{rajivk,pradeepv}@smu.edu.sg

ABSTRACT
Recent work in decentralized stochastic planning for coop-
erative agents has focussed on exploiting homogeneity of
agents and anonymity in interactions to solve problems with
large numbers of agents. Due to a linear optimization formu-
lation that computes joint policy and an objective that indi-
rectly approximates joint expected reward with reward for
expected number of agents in all state, action pairs, these ap-
proaches have ensured improved scalability. Such an objec-
tive closely approximates joint expected reward when there
are many agents, due to law of large numbers. However,
the performance deteriorates in problems with fewer agents.
In this paper, we improve on the previous line of work by
providing a linear optimization formulation that employs a
more direct approximation of joint expected reward. The
new approximation is based on offline computation of bino-
mial distributions. Our new technique is not only able to im-
prove quality performance on problems with large numbers
of agents, but is able to perform on par with existing best
approaches on problems with fewer agents. This is achieved
without sacrificing on scalability/run-time performance of
previous work.

Keywords
Multi-agent Systems, Dec-MDPs, Anonymity

1. INTRODUCTION
The worst case complexity of multi-agent planning under

uncertainty increases exponentially with increase in number
of agents [2]. Recent work in decentralised stochastic plan-
ning [15, 17] has highlighted the advantage of exploiting ho-
mogeneity1 in agent models and anonymity in interactions
to improve the scalability with respect to number of agents.
Interaction anonymity indicates that interaction outcomes
between agents are dependent on number of agents involved
and not on actual identity of agents. For instance, in the
navigation domains [6, 19], outcomes of collisions in narrow

1Homogeneity refers to agents having the same decision
models, i.e., state, action, transition and reward functions
in domains with transition uncertainty.

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

corridors are dependent only on the number of agents en-
tering the narrow corridor simultaneously and not on the
specific agents. Similarly, in the coordination problem in-
troduced by [22] for Autonomous Underwater and Surface
Vehicles (AUVs and ASVs), the value of coordinating in
order to obtain underwater samples is dependent on the
number of agents sampling simultaneously and not on which
specific agents are sampling. In fact, most sensor network
problems [5, 8] have coordination problems with anonymous
interactions, where the confidence in tracking a target is de-
pendent on the number of sensors and not on which specific
sensors are tracking that target. Finally, in the context of
coordinating defenders in security patrolling problems [14],
the security provided for a potential location is typically de-
pendent on the number of defender teams patrolling that
location.

While homogeneity and anonymity have broad applicabil-
ity in multi-agent systems, we specifically focus on multi-
agent planning problems represented using the rich frame-
work of Decentralized Markov Decision Process (Dec-MDP) [2].
Dec-MDP provides a framework to represent decentralized
decision-making problems under transition uncertainty. How-
ever, solving a Dec-MDP to generate coordinated yet decen-
tralized policies in environments with uncertainty is NEXP-
Hard [2]. Researchers have typically employed three types
of approaches to address this significant computational com-
plexity: (1) approximate dynamic programming and policy
iteration approaches [9, 10, 13, 3]; (2) exploit static and dy-
namic sparsity in interactions [1, 8, 20, 21, 7]; (3) exploit
homogeneity in agent models and aggregate influence in in-
teractions [17, 21, 7, 19].

We focus on the third category of approximation approaches,
specifically exploiting anonymity in interactions and homo-
geneity in agent models. In Dec-MDPs, interaction anonymity
refers to joint rewards and transitions being dependent on
number of agents in certain state, action pairs and not on
specific agents in certain state, action pairs. Specifically we
extend on the work by Varakantham et al. [17]. Intuitively,
Varakantham et al. achieve scalability with respect to num-
ber of agents due to three key factors:

• An updated factored Dec-MDP model called D-SPAIT
that considers homogenous and anonymous reward and
transition models; Complex reward and transition func-
tions are approximated using piecewise constant or piece-
wise linear functions.

• Linear/quadratic optimization formulations for comput-
ing joint policies in decentralized MDPs; and finally

• Optimizing joint reward for expected number of agents
(instead of optimizing joint expected reward for all agents)
in all state, action pairs. We refer to the optimization
of joint reward for expected number of agents as the
Expected Agent or EA objective. Due to law of large
numbers, EA objective was shown to provide good per-
formance on problems with large number of agents.

However, Varakantham et al.’s approach has two aspects
that can be improved: (1) Reward functions are approxi-
mated using piecewise constant or piecewise linear compo-
nents for linear or quadratic optimization to be applicable.
(2) On problems with few agents, quality of the joint policies
can deteriorate significantly.
Towards addressing these issues, we make the following key
contributions in this paper:

1. We first define the expected joint reward objective,
referred to as ER in the context of anonymous and
homogenous interactions (reward and transition func-
tions) in D-SPAIT. The key advantage of this objective
is that reward and transition functions (however com-
plex) do not have to be approximated.

2. We then provide a new approach that directly approx-
imates the ER objective by using pre-computed bi-
nomial distributions. Specifically, pre-computed bino-
mial distributions are employed to obtain an estimate
on the probability that certain number of agents are
in a certain state, taking a certain action.

3. We also show how this approach can be trivially ex-
tended to handle problems with multiple agent types
and joint transition interactions.

4. Finally, we also provide detailed experimental results
that demonstrate that the new approach is not only
able to outperform Varakantham et al.’s algorithm,
but also is able to perform on par or better than best
known existing algorithms for benchmark problems in
TI-Dec-MDPs.

2. BACKGROUND
In this section, since the approaches employed are based

on dual formulation for solving MDPs, we first provide a
brief background of the Markov Decision Process (MDP)
model and the dual formulation for solving MDPs. We then
describe the underlying model for decentralized stochastic
planning that represents homogeneity and anonymity and
the approach that exploits homogeneity and anonymity in
interactions. Finally, we provide a brief description of bino-
mial distributions.

2.1 MDPs
Markov Decision Processes (MDPs) [11] are used to repre-

sent decision problems in the face of transitional uncertainty.
An MDP is defined using the tuple: 〈S,A, T ,R, H, α〉. S
represents the set of states, A represents the set of actions or
decisions that can be taken in the states, T : S ×A → ∆(S)
represents the transition function and is a probability distri-
bution over the destination states. T (s, a, s′) is the probabil-
ity that the state transitions from s to s′ on taking action a
and

∑
s′ T (s, a, s′) = 1, ∀s, a. R : S ×A → R represents the

reward matrix. R(s, a) is the reward obtained by taking ac-
tion a in state s. α0 represents the initial state distribution
and hence for all t > 0, αt(s) = 0.

The goal is to obtain a policy, π : S×H → ∆(A) such that
the expected value, V0(α) is maximized over a given time
horizon, H and a starting belief (i.e., probability distribu-
tion) of α over states. ∆(A) denotes a probability distribu-
tion over the set of actions A and more concretely, πt(s, a)
gives the probability of taking action a in state s at time t
and

∑
a π

t(s, a) = 1. V0 is defined as follows:

V0(α) = max
π

∑
s∈S

V0(s, π) · α0(s), where

Vt(s, π) =


∑
a π

t(s, a) · R(s, a) if t = H − 1∑
a π

t(s, a) · (R(s, a)
+
∑
s′ T (s, a, s′) · Vt+1(s′, π)) otherwise

The optimal policy in the case of an MDP is a deterministic
one. That is to say, for all time steps t and for all states s
there exists one action, a such that πt(s, a) = 1.

The dual formulation (primal formulation employs value
function variables) for solving an MDP is given by:

max
x

∑
t,s,a

R(s, a) · xt(s, a) (1)

s.t.
∑
a

xt+1(s′, a)−
∑
s,a

xt(s, a) · T (s, a, s′) = αt(s), ∀s′

(2)

xt(s, a) ≥ 0, ∀s, a, t;

where xt(s, a) represents the number of times action a has
been chosen at time t in state s and therefore, objective
refers to expected value. The main set of constraints (Equa-
tion 2) ensures that flow out of a state s′ is equal to flow
coming into s′. Note that αt(s) = 0 for all t > 0 and s and
α0 is the starting belief distribution over states. The agent
policy is obtained by normalizing {xt(s, a)}, i.e., :

πt(s, a) =
xt(s, a)∑
a′ x

t(s, a′)
,∀t, s

2.2 Model
We now describe the Decentralized Stochastic Planning

with Anonymous InteracTions (D-SPAIT) model introduced
by Varakantham et al. [17]. D-SPAIT combines the cooper-
ative stochastic planning framework of factored Decentral-
ized MDP (DEC-MDP) [1] with homogeneity and interac-
tion anonymity from competitive game theory [12, 18]. In-
tuitively D-SPAIT can be viewed as representing a class of
problems that is more general than the transition indepen-
dent (or reward independent) Dec-MDP model and less gen-
eral than the Dec-MDP model. However, D-SPAIT assumes
that joint reward (or joint transition) can be represented as
a sum (or product) of individual agent rewards (or individ-
ual agent transitions) that are each dependent on number of
agents in relevant state, action pairs.

Similar to Dec-MDP, D-SPAIT also assumes full joint ob-
servability of the system state. For ease of understanding
and to reduce the clutter in notation, we first define the
model assuming all agents are of the same type, i.e., they
are homogeneous and provide the key ideas of the approach
corresponding to the simpler model. We then provide model
and approach for the general case. Here is the tuple for a
single type of agents:〈

P,S,A, IR, Iϕ, R, ϕ, (αi)i∈P
〉

• P is the agent population. S and A represent the state
and action sets respectively for any individual agent in
P. Given a single type of agents, states for any agent
are from the same set S and therefore joint state space
is S|P|. Each agent is able to fully observe its local state
and the joint state space is factored over the individual
agent state space. We have the same situation with the
action set, A.

• IR(si, ai) is the set of state, action pairs that have a re-
ward interaction with an agent in state si(∈ S) executing
action ai(∈ A), i.e.,

IR(si, ai) = {(s′i, a′i), (s′′i , a′′i), · · · }

In essence, an agent in (si, ai) will have reward interac-
tions with other agents in state, action pairs belonging
to the set IR(si, ai).

• Iϕ(si, ai) is the set of state, action pairs that have a
transition interaction with an agent in si and executing
ai.

• R is the individual reward function that is dependent
on the number of agents involved in reward interaction
with the agent. Specifically, R(si, ai, dsi,ai) is the reward
obtained in state si by taking action ai when there are
dsi,ai agents in state, action pairs that have reward in-
teractions with (si, ai). Reward function is defined for
all values of dsi,ai (0 ≤ dsi,ai ≤ |P|). If there are no
reward interactions for a state, action pair (si, ai):

R(si, ai, dsi,ai) = R(si, ai),∀dsi,ai (3)

Also, given a set of constants, {dsi,ai}i∈P , the joint re-
ward for all agents at a time step is expressed as the sum
of individual rewards:

∑
i∈P R(si, ai, dsi,ai). Note that

this is not equivalent to complete reward independence,
as there is dependence on numbers of other agents.

• ϕ is the individual transition function that is dependent
on number of agents involved in transition interaction
with the agent. Specifically, ϕ(si, ai, s

′
i, dsi,ai) is the

probability of transitioning from state si to s′i on tak-
ing action ai when there are dsi,ai agents in state, ac-
tion pairs that have transition interactions with (si, ai).
Transition function is defined for all values of dsi,ai (0 ≤
dsi,ai ≤ |P|). If there are no transition interactions for
a state, action pair (si, ai):

ϕ(si, ai, dsi,ai) = ϕ(si, ai),∀dsi,ai (4)

Also, given a set of constants, {dsi,ai}i∈P , the joint tran-
sition for all agents at a time step is expressed as the
product of individual transition:

∏
i∈P ϕ(si, ai, dsi,ai).

Note that this is not equivalent to complete transition in-
dependence, as there is dependence on numbers of other
agents.

• α represents the initial belief distribution for any agent
in P.

The goal with Expected Agents (EA) objective is to find
a joint policy, π = (π1, . . . , πn) (with one policy for each
agent) over the given time horizon, H that maximizes the
following value function

V 0(π) =
∑

si,ai,t,i

R
(
si, ai,

∑
k,(sk,ak)∈IRsi,ai

xtk(sk, ak)
)
· xti(si, ai)

(5)

where xti(si, ai) is the expected number of times action ai
is executed in state si for agent i at time t given individ-
ual agent policies πi for all agents in the joint policy π. It
should be noted that this objective is an extension of the
objective employed in the dual formulation MDP of Equa-
tion 1. Specifically, they extend the objective to sum over
multiple agents and account for the condition that reward for
individual agents is dependent on number of other agents.
The third argument for reward function is expected num-
ber of agents and hence represents the EA objective. Due
to linearity of expectation, expected number of agents in a
state, action pair is the sum of relevant (in this case, all
agent, state, action tuples which have reward interactions
with si, ai) x values.

2.3 Approach
Varakantham et al. [17] provide scalable optimization mod-

els to solve D-SPAIT problems with different kinds of re-
ward and transition functions. Specifically, they consider a
modification of the dual formulation employed for solving
MDPs. One of the main results of their paper shows that
all agents of a type can have the same policy, i.e.,xti(s, a) =
xtj(s, a), ∀s ∈ S and a ∈ A. The formulation for solving D-
SPAIT problems with a single type that exploits this result
is provided in Algorithm 1. There is a difference in both ob-
jective and constraints from the dual formulation for solving
MDPs to account for multiple agents.

Algorithm 1: SolveDSPAIT-H-EA()

max
x

∑
si,ai,t

|P| ·R
(
si, ai, |P| ·

∑
(s′i,a

′
i)∈I

R
si,ai

xt(s′i, a
′
i)
)

· xt(si, ai) s.t.∑
ai

xt(si, ai)−
∑
s′i,ai

xt−1(s′i, ai)·

· ϕ(s′i, ai, si, |P| ·
∑

(s′i,a
′
i)∈I

ϕ

s′
i
,ai

xt(s′i, a
′
i)) = αt(si),∀si, t

xt(si, ai) ∈ [0, 1] ∀t, si, ai

Since xti(si, ai) will be the same for all agents i, we use
xt(si, ai) (instead of xti(si, ai)), a key difference from the
objective definition in Equation 5. Furthermore, expected
number of agents (due to linearity of expectation and same
policy for all agents) in relevant state, action pairs now be-
comes |P| ·

∑
(s′i,a

′
i)∈I

R
si,ai

xt(s′i, a
′
i).

Previously, scalable linear or convex formulations with bi-
nary variables were provided to solve the optimization model
of Algorithm 1 for joint reward functions that are linear,
Piecewise Constant (PWC) or Piecewise Linear and Convex
(PWLC). Furthermore, they also provided a linear formu-
lation with binary variables when there is a joint piecewise
constant transition function. Given generality of PWC func-
tions in approximating general functions, they were able to
represent general joint reward/transition functions. We re-
fer to the best performing formulation by Varakantham et
al. as PWLD.

2.4 Binomial Distribution
Binomial distribution is a discrete probability distribution

that is typically used to model number of successes in n
independent yes/no experiments, where the probability of
success in an experiment (i.e., getting a yes) is given by α.
The probability of getting exactly k successes in n trials is
given by the probability mass function:

f(k;n, α) =

(
n

k

)
· αk · (1− α)n−k (6)

where

(
n

k

)
=

n!

k!(n− k)!

In this paper, we employ binomial distribution to represent
the probability that k agents will be in a certain state, ac-
tion pair given that we have probability for an agent to
be in that state, action pair (i.e., xt(si, ai) in finite hori-
zon Dec-MDPs). As will be explained later, such probabili-
ties are useful in the computation of expected reward as we
consider anonymous interactions, i.e., reward and transition
functions are dependent on numbers of agents.

3. UPDATED D-SPAIT
The only change considered here is with respect to the

objective. The EA (Expected Agent) objective employed in
D-SPAIT (Equation 5) is different from the objective em-
ployed in Dec-MDPs. Here, we provide an objective that
better approximates the Dec-MDP objective by calculat-
ing expected reward (rather than the reward for expected
number of agents employed in D-SPAIT). We refer to the
following as the ER (Expected Reward) objective.

V 0(π) =
∑

si,ai,t,i

xti(si, ai)·∑
d≤|P|−1

PrRxtP\{i}
(d, si, ai) ·R(si, ai, d+ 1) (7)

=
∑

i,si,ai,t,d≤|P|

PrRxtP
(d, si, ai) ·R(si, ai, d) (8)

where PrRxtP\{i}
is the probability of d agents in the set P \ i

being in state, action pairs where there are reward interac-
tion with si, ai at time t. Inner sum over d (in Equation 7)
calculates the expected reward over different possible num-
bers of other agents (excluding i) in each state, action pair
given that agent i will be in that state, action pair. Outer
sum considers the probability of agent i being in that state,
action pair. Equation 8 combines the two sum operations to
provide a more compact expression.

In ER objective we employ reward on actual number of
agents (and not on expected number of agents), so there
is no need to approximate reward function using piecewise
constant or piecewise linear function. In the next section,
we also explain how we can optimize the ER objective using
pre-computed binomial distributions without sacrificing on
the scalability achieved with the EA objective.

4. OPTIMISING ER OBJECTIVE
In this section, we provide a mechanism to optimize the

ER objective in a scalable manner. We focus specifically on
reward interactions by assuming transition independence.
However in Section 4.1, we provide details on the changes

required to consider transition dependence. Here are the
key major steps in deriving the updated linear formulation
to handle ER:

• Step 1: Derive value function expression assuming all
agents of the same type have same policies (albeit a
mixed one).

• Step 2: Derive the connection between PrRxtP
to bino-

mial distribution.

• Step 3: Approximate computation of PrRxtP
using pre-

computed binomial distributions.

• Step 4: Combine the updates to value function and
PrRxtP

into a linear optimization model.

Step 1: For D-SPAIT, it was shown that all agents of the
same type can have the same policy (typically randomized).
In this paper, we also make a similar assumption thereby
reducing the objective in Equation 8 to the following:

V 0(~π) =
∑

si,ai,t,d≤|P|

d · PrRxtP (d, si, ai) ·R(si, ai, d) (9)

In this new equation, we no longer sum over agents, i. In-
stead, since for all agents in a certain state, action pair, the
expected reward would be the same, we multiply the ex-
pected reward equation by the number of agents, d.

Algorithm 2 provides the general optimization model for
the ER objective with homogeneous agents. We define ρt,R(si, ai)
as the probability of an agent being in state, action pairs rel-
evant to si, ai with respect to the reward function. There-
fore,

ρt,R(si, ai) =
∑

(s′i,a
′
i)∈I

R(si,ai)

xt(s′i, a
′
i)

Step 2: We now provide details on the computation of
PrRxtP

. Since ρt,R(si, ai) indicates the probability of being

in relevant (with respect to reward function) state, action
pairs for si, ai , a key observation is that PrRxtP

(., si, ai)

will follow a binomial distribution. The twin parameters of
this binomial distribution, namely n (number of trials) and
α (probability of success of each trial) will be the number
of agents, |P| and ρt,R(si, ai) respectively. Therefore, we
have:

PrRxtP
(d, si, ai) =

(
|P|
d

)
·
(
ρt,R(si, ai)

)d
·
(

1− ρt,R(si, ai)
)|P|−d

To make this concrete, we now provide an example.

Example 1. Let us consider a two agent problem, where
IR(si, ai) = {(si, ai)} and both agents are homogeneous (same
models). Then ρt,R(si, ai) = xt(si, ai) and therefore, proba-
bility that an agent is not in (si, ai) is (1− xt(si, ai)). So,

PrRxtP
(0, si, ai) = (1− xt(si, ai)) · (1− xt(si, ai))

PrRxtP
(1, si, ai) = 2 · xt(si, ai) · (1− xt(si, ai))

PrRxtP
(2, si, ai) = xt(si, ai) · xt(si, ai)

Algorithm 2: SolveDSPAIT-H-ER()

max
x

∑
si,ai,t,d≤|P|

d · PrRxtP (d, si, ai) ·R(si, ai, d) s.t.

ρt,R(si, ai) =
∑

(s′i,a
′
i)∈I

R(si,ai)

xt(s′i, a
′
i)

PrRxtP
(d, si, ai) =

(
|P|
d

)
·

·
(
ρt,R(si, ai)

)d
·
(

1− ρt,R(si, ai)
)|P|−d

, ∀d, si, ai (10)∑
a

xt(si, ai)−
∑
s′,a

xt−1(s′i, a
′
i) · ϕ(s′i, ai, si) = αt(si),∀si, t

(11)

xt(si, ai) ∈ [0, 1] ∀t, si, ai

Step 3: Probability computation in Equation 10 is non-
linear, so solving the optimization model of Algorithm 2 ex-
actly has significant computational complexity. Therefore,
we provide a mechanism to approximate the computation of
the objective. Intuitively, we pre-generate binomial distri-
bution probabilities for a fixed set of values (e.g., 0.05, 0.15,
0.25, 0.35...,) for each ρt,Rsi,ai . In the optimization model, we
provide constraints that will ensure that a fixed value that
is nearest to the actual value of ρt,Rsi,ai is employed.

In implementing this approximation approach, we divide
the space of feasible ρt,R(si, ai) values2 into K intervals

{[ďk(si, ai), d̂k(si, ai)]}k∈K . We pre-generate binomial dis-
tribution for |P| agents for each interval k using a proba-
bility of success given by the midpoint of the interval, i.e.,
ďk(si,ai)+d̂k(si,ai)

2
. Btk(si, ai, i) denotes the pre-computed bi-

nomial probability values corresponding to all values in in-
terval k for i (out of |P|) agents being in states relevant to
si, ai pair.

Step 4: Therefore, a key challenge in the context of the opti-
mization problem is to identify the interval corresponding to
the actual value of ρt,R(si, ai) using linear constraints. This
can be enforced through the use of extra variables while pre-
serving linearity of the constraints. Let ytk(si, ai) be a binary
variable that indicates whether ρt(si, ai) belongs to the kth

interval. That is to say, if ρt(si, ai) ∈ [ďk(si, ai), d̂k(si, ai)]
then yt,k(si, ai) = 1 otherwise 0. The following linear con-
straints will be employed to identify the interval for a given
ρt(si, ai): ∑

k

ytk(si, ai) = 1 (12)

ρt,R(si, ai) ≥
∑
k

ytk(si, ai) · ďk (13)

ρt,R(si, ai) ≤
∑
k

ytk(si, ai) · d̂k (14)

2By default the set of feasible values is [0,1] for finite horizon
problems. However, with simple reachability analysis the
interval be tightened, specifically the upper bound.

By setting values to ytk(si, ai), it is trivial to verify that
interval for ρt,R(si, ai) is correctly identified with the above
constraints.

Algorithm 3: SolveDSPAIT-H-ER-Binom()

max
x

∑
si,ai,t,k

V tk (si, ai) s.t.

V tk (si, ai) ≤ ytk(si, ai) ·M (15)

V t,k(si, ai) ≤
∑
i

Btk(si, ai, i) · i ·R(si, ai, i) (16)

V t,k(si, ai) ≥
∑
i

Btk(si, ai, i) · i ·R(si, ai, i)

− (1− yt,k(si, ai)) ·M (17)

ρt,R(si, ai) =
∑

(s′i,a
′
i)∈I

R(si,ai)

xt(s′i, a
′
i) ∀si, ai, t

∑
a

xt(si, ai)−
∑
s′i,ai

xt−1(s′i, ai)·

· ϕ(s′i, ai, si) = αt(si) ∀si, t (18)∑
k

ytk(si, ai) = 1 (19)

ρt,R(si, ai) ≥
∑
k

yt,k(si, ai) · ďk ∀si, ai, t (20)

ρt,R(si, ai) ≤
∑
k

yt,k(si, ai) · d̂k ∀si, ai, t (21)

ρt,R(si, ai) ∈ [0, 1] ∀t, si, ai (22)

We provide the linear formulation that combines these in-
sights in Algorithm 3. Since expected reward depends on the
intervals for probability, we introduce a new set of variables
V tk (si, ai). Constraints 15-17 ensure the following:

• If ρt,R(si, ai) does not belong to interval k, then V tk (si, ai)
is assigned a value of 0.

• If ρt,R(si, ai) belongs to interval k, then V tk (si, ai) is
assigned the approximated expected reward computed
from pre-computed binary distribution values, Btk(si, ai, i).

Rest of the constraints ensure flow preservation for the x
variables (Constraint 18) and assignment of the right inter-
val for ρt,R(si, ai).

4.1 Anonymous Transition Interactions
To handle anonymous transition interactions, we have to

modify the flow preservation constraint of Equation 11. The
key difference from D-SPAIT is that we consider expected
transition probability as opposed to transition probability
for expected number of agents. Specifically, the new flow
preservation constraint is given by:

∑
a

xt(si, ai)−
∑
s′,a

xt−1(s′i, a
′
i) ·
[∑
d≤|P|

Prϕ
xtP

(d, s′i, ai)·

· ϕ(s′i, ai, si, d)
]

= αt(si), ∀si, t (23)

Prϕ
xtP

is computed in a similar way as PrRxtP
.

Prϕ
xtP

(d, si, ai) =

(
|P|
d

)
·
(
ρt,ϕ(si, ai)

)d
·
(

1− ρt,ϕ(si, ai)
)|P|−d

where ρt,ϕ(si, ai) =
∑

(s′i,a
′
i)∈I

ϕ(si,ai)

xt(s′i, a
′
i)

Once again, since probability computation is non-linear,
we employ a similar approximation to the one for expected
reward computation. We pre-generate binomial distribution
values for certain fixed values of ρt,ϕ(si, ai). In the optimiza-
tion model, we have constraints that ensure expected tran-
sition probability is computed corresponding to the nearest
fixed value for the actual value of ρt,ϕ(si, ai). These con-
straints will be very similar to the ones introduced for ex-
pected reward computation. Due to space constraints, we
do not provide it here.

It should be noted that when there are transition function
based interactions, the optimal policy typically is a history
dependent policy, i.e., action is dependent on the history of
state, action pairs. Since computing history based policies
reduces the scalability significantly, we focus primarily on
policies that are only based on current state.

4.2 Extending to Multiple Types
To ensure ease of explanation, we have so far focussed

on problems where all agents are of a single type. We now
consider problems with multiple types. First, we consider
modifications to the D-SPAIT tuple:

〈
Γ, {Pτ}τ∈Γ, {Sτ}τ∈Γ,A, IR, Iϕ, {Rτ}τ∈Γ, {ϕτ}τ∈Γ, {ατ}τ∈Γ

〉

The first extension to D-SPAIT is to represent multiple
types of agents, where agents of each type τ have a different
state and action space, i.e., Sτ and Aτ along with different
transition, ϕτ and reward functions, Rτ . Pτ is the set of
agents of type τ . When considering multiple types of agents
each with a different state and action space, IR and Iϕ are
defined for tuples of state, action and type. IR(sτ , aτ , τ) is
the set of state, action and type pairs of agents that will
have reward interactions with an agent of type τ in state sτ
and taking action aτ .

IR(sτ , aτ , τ) = {(s1, a1, 1), (s2, a2, 2), · · · }

where sτ is a state for a type τ agent. We will have a similar
structure for Iϕ.

The second set of changes are to the approach and we
go through the same four steps employed in Section 4. In
Step 1, we update the value function. As indicated earlier,
all agents of the same type have the same policy. We will
employ xtτ to represent the flow variables corresponding to
an agent of type τ . From Equation 8, we have:

V 0(~π) =
∑

i,si,ai,t,d≤|P|

PrRxtP
(d, si, ai) ·R(si, ai, d)

Accommodating for the fact that all agents having same
types have same policies, we have:

=
∑

τ,sτ ,aτ ,t

∑[
d1≤|P1|,...,dτ≤|Pτ |...d|Γ|≤|P|Γ|

] dτ ·[∏
τ ′∈Γ

PrRxtP
τ′

(dτ ′ , sτ , aτ)
]
·Rτ (sτ , aτ ,

∑
τ ′

dτ ′)

(24)

where

PrRxtP
τ′

(dτ ′ , sτ , aτ) =

(
|Pτ ′ |
dτ ′

)
·
(
ρt,Rτ ′ (sτ , aτ , τ)

)dτ′ ·
·
(

1− ρt,Rτ ′ (sτ , aτ , τ)
)|Pτ′ |−dτ′

(25)

ρt,Rτ ′ (sτ , aτ , τ) =
∑

(sτ′ ,aτ′ ,τ
′)∈IR(sτ ,aτ ,τ)

xtτ ′(sτ ′ , aτ ′) (26)

Equations 25 and 26 provide the required updates to Step
2 in order to represent types.

For Steps 3 and 4, we can again employ this objec-
tive function in a linear optimization formulation by pre-
computing the binary distribution employed to calculate
probability distribution3 of Equation 25 and computing the
interval for ρ variables using binary variables and linear con-
straints.

Example 2. Let us consider a two agent problem, where
IR(s1, a1, 1) = {(s1, a1, 1), (s2, a2, 2)} and each agent is of a
different type. Then,

ρt,R1 (s1, a1, 1) = xt1(si, ai)

ρt,R2 (s1, a1, 1) = xt2(s2, a2)

PrRxtP
(0, s1, a1) = (1− xt1(s1, a1)) · (1− xt2(s2, a2))

PrRxtP
(1, s1, a1) = xt1(s1, a1) · (1− xt2(s2, a2))+

+ xt2(s2, a2) · (1− xt1(s1, a1))

PrRxtP
(2, s1, a1) = xt1(s1, a1) · xt2(s2, a2)

It should be noted that many of the benchmark problems
from Dec-MDP literature have two agents and therefore we
can employ the probability expressions derived in Exam-
ple 2.

4.3 Key Properties and Enhancements
In this subsection, we highlight key properties and en-

hancements of the new approximation technique that pre-
computes binomial distribution values.

• In the previous work by Varakantham et al., complex
reward functions (any non-linear function) had to be ap-
proximated using piecewise constant or piecewise con-
vex, linear functions to provide scalable solutions. In
this work, as we consider reward function directly, there
is no need for approximation of the reward function and
any complex reward function can be handled directly.

3It should be noted that the ρ value computed in Equa-
tion 26 will always be between 0 and 1, as we are computing
probability for one agent of type τ ′ to be in state, action
pair sτ , aτ for a type τ agent.

Horizon Binom objective Binom Simulated Existing
50 154.94 155.05 154.94
60 185.71 185.70 185.71
70 216.48 216.43 216.47
80 246.86 246.82 247.24
90 278.02 277.97 278.01
100 308.79 308.83 308.78
1000 3077.63 3077.98 3078.00

Table 2: Recycling Robots.

• In the previous sections, we provide general expressions
assuming an agent in every state, action pair has interac-
tions with agents in other state, action pairs. It should
be noted that if the set IR(si, ai) (or IR(sτ , aτ , τ)) is
empty for a state, action pair, then there will be no prior
computation of binomial distribution.

• Finally, while we do not explicitly address the curse of
history, our approach can solve problems with reason-
ably long horizons (≤ 50). In problems with even longer
horizons, it is always feasible to employ a rolling horizon
method where our approach is employed to compute a
policy for a horizon of 50 and then end state distribution
is used for the start distribution of the second block of
50 time steps and so on.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our ap-

proach on existing benchmark problems introduced by Spaan
et al. [16, 6] and Dibangoye et al. [4].

We first compare all the algorithms with respect to solu-
tion quality on eight navigation problems by Spaan and Melo
et al. [16, 6]. In all these problems, the number of agents
varied between 2 and 4 and horizon was fixed at 250. For all
the navigation problems for all horizon values, we were able
to obtain the solution in less than 15 minutes4. For our ap-
proach, we provide both the objective value (referred to as
BinomObjective) of our optimization problem and the Dec-
MDP objective value computed using simulation (referred to
as BinomSimulated) over 20000 trials5 for the policy com-
puted by our approach. Similarly for the PWLD algorithm
by Varakantham et al., we provide both PWLDObjective
and PWLDSimulated. The optimal solution value (obtained
by using either Melo et al. or Dibangoye et al.) is provided
under the column titled ”Existing”. Here are the key obser-
vations from Table 1:

• On all the eight problems, our approach either provided
the same or better solution quality (BinomSimulated)
than the one obtained by PWLD.

• BinomObjective was either equal or very close to Binom-
Simulated in all the eight problems. This implies that the
ER objective computed through pre-computed binomial
distribution values is approximating the expected reward
accurately.

4Configuration for the machine on which experiments were
run: Windows 7 Enterprise, 64Bit OS, Interl(R) Core(TM)
i5-3470, 3.2GHz 4GB RAM
5When we calculate the simulated value using multiple
rounds of 20000 samples, the change in value was ≤ ±0.1

Horizon Binom objective Bimom Simulated Existing
2 0.00 0.00 0.00
3 0.13 0.13 0.13
4 0.43 0.43 0.43
5 0.90 0.88 0.89
6 1.49 1.49 1.49
10 4.68 4.68 4.68
100 94.35 94.35 94.26
1000 994.35 994.36 994.20

Table 3: Meeting in a grid 3x3.

Horizon Binom objective Bimom Simulated Existing
5 0.00 0.00 0.00
6 0.00 0.00 0.00
7 0.71 0.71 0.71
8 1.66 1.66 1.67
9 2.61 2.61 2.68
10 3.66 3.64 3.68
20 13.65 13.64 13.68
30 23.65 23.65 23.68
40 33.65 33.65 33.68
50 43.65 43.65 43.68
100 93.65 93.66 93.68

Table 4: Meeting in a grid 8x8.

• In all the eight navigation problems, our solution was
very close to the optimal solution in problems where re-
wards range from -20 to 1.

• For PWLD, there was a significant difference between
PWLDObjective and PWLDSimulated on at least 4 prob-
lems indicating an inaccurate approximation.

We also compared solution quality on a few other bench-
mark problems employed in Dibangoye et al. [4] where we
have accurate parameter values. On these problems, we were
unable to get any reasonable solution values for PWLD, pri-
marily because piecewise constant approximation of reward
functions in these problems was not accurate. Table 2, Ta-
ble 3 and Table 4 provide the results for Binom for the re-
cycling robots, meeting grid 3x3 and meeting grid 8x8 prob-
lems respectively in comparison with the optimal value. We
were able to compute solutions within 15 minutes on all three
problems and for all horizons. Here are the key observations
with respect to solution quality:

• On all the three problems and for all horizon values, we
were able to get optimal solution quality.

• On all the three problems and for all horizon values, Bi-
nomObjective was either equal or very close to Binom-
Simulated indicating a good approximation of expected
reward.

Finally, we compare against the approach of Varakantham
et al. [17] referred to as PWLD on the navigation problems
from [6] with 200 agents. We consider three different reward
configurations, primarily ones which are piecewise constant
so as to ensure PWLD does not have to approximate the
rewards. Both approaches generated the solutions within 2
hours. The three reward configurations are as follows: (i)
Reward Configuration 1: Piecewise Linear and Concave; (ii)

Map Horizon PWLDObjective PWLDSimulated BinomObjective BinomSimulated Existing
Map 1 250 12.013 8.820 10.94 10.947 12.059
Map 2 250 10.576 7.373 10.238 10.246 11.108
Map 3 250 13.646 11.339 12.884 12.877 13.837

Pentagon 250 15.363 14.189 14.697 14.65 16.016
CIT 250 10.576 10.575 10.576 10.583 11.128
ISR 250 15.363 14.444 14.49 14.413 14.407
MIT 250 5.856 5.756 6.352 6.362 6.705

SUNY 250 10.576 10.575 10.576 10.57 11.149

Table 1: Navigation domains with 2-4 agents. Comparison with Melo et al.s approach.

Map Reward Configuration 1 Reward Configuration 2 Reward Configuration 3
PWLD Simu-
lated

Binom Simu-
lated

PWLD Simu-
lated

Binom Simu-
lated

PWLD Simu-
lated

Binom Simu-
lated

Map 1 725.41 744.77 906.77 932.67 1745.32 1757.27
Map 2 154.26 231.79 -46.29 0 149.87 163.51
Map 3 88.44 114.8 -24.46 1.07 55.17 76.24
Map 4 -44.83 74.47 -70.43 0 -146.97 5.53
Pentagon 602.92 606.23 -7.7 8.46 1316.04 1324.8
CIT 786.57 820.42 566.04 597.75 1511.76 1524.58
ISR 564.79 607.24 -38.7 11.74 1364.78 1377.53
MIT 1258.2 1257.14 881 917.67 1764.05 1773.65
SUNY 564.91 607.28 -27.46 12.47 1313.26 1321.99

Table 5: Navigation domains with different reward configurations and 200 agents. Comparison with Varakan-
tham et al.s approach (PWLD).

Reward Configuration 2: Piecewise Linear and Convex; (iii)
Reward Configuration 3: Multimodal piecewise linear.

In the experiments, we used same number of intervals for
ρ in our approach as number of piecewise components used
in the PWLD approach. Comparison of simulated values of
policies generated using PWLD and our binomial approach
is shown in table 5. On all the maps and reward structures,
our approach provided solution which is better or at least
as good as PWLD. Our approach would perform even bet-
ter than PWLD if we use non-linear reward configurations
that do not have piecewise constant/linear components, as
PWLD would have to further approximate the rewards.

In conclusion, our approach provides better performance
than the approach by Varakantham et al. in problems with
fewer and large number of agents. Furthermore, on prob-
lems with few agents (2-4 agents), our approach provided
comparable solution quality to optimal solution approaches.

REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.

Solving transition independent decentralized Markov
decision processes. Journal of Artificial Intelligence
Research, 22:423–455, 2004.

[2] D. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

[3] D. S. Bernstein, E. A. Hansen, and S. Zilberstein.
Bounded policy iteration for decentralized POMDPs.
In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 1287–1292,
Edinburgh, Scotland, 2005.

[4] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up
decentralized mdps through heuristic search. arXiv
preprint arXiv:1210.4865, 2012.

[5] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable
multiagent planning using probabilistic inference. In
Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, pages 2140–2146,
Barcelona, Spain, 2011.

[6] F. S. Melo and M. Veloso. Decentralized mdps with
sparse interactions. Artificial Intelligence,
175(11):1757–1789, 2011.

[7] H. Mostafa and V. Lesser. Offline planning for
communication by exploiting structured interactions
in decentralized mdps. In Web Intelligence and
Intelligent Agent Technologies, 2009. WI-IAT’09.
IEEE/WIC/ACM International Joint Conferences on,
volume 2, pages 193–200. IET, 2009.

[8] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of
distributed constraint optimization and POMDPs. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 133–139, 2005.

[9] F. A. Oliehoek. Decentralized pomdps. Reinforcement
Learning, pages 471–503, 2012.

[10] S. Omidshafiei, A. akbar Agha-mohammadi,
C. Amato, and J. P. How. Decentralized control of
partially observable markov decision processes using
belief space macro-actions. In ICRA’15, 2015.

[11] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1994.

[12] T. Roughgarden and É. Tardos. How bad is selfish
routing? Journal of the ACM, 49(2):236–259, 2002.

[13] S. Seuken and S. Silberstein. Improved
memory-bounded dynamic programming for
decentralized POMDPs. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence,
pages 344–351, 2007.

[14] E. Shieh, M. Jain, A. X. Jiang, and M. Tambe.
Efficiently solving joint activity based security games.
In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 346–352.
AAAI Press, 2013.

[15] E. Sonu, Y. Chen, and P. Doshi. Individual planning
in agent populations: Exploiting anonymity and
frame-action hypergraphs. In International Conference
on Automated Planning and Scheduling, 2015.

[16] M. T. Spaan and F. S. Melo. Interaction-driven
markov games for decentralized multiagent planning
under uncertainty. In Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems-Volume 1, pages 525–532.
International Foundation for Autonomous Agents and
Multiagent Systems, 2008.

[17] P. Varakantham, Y. Adulyasak, and P. Jaillet.
Decentralized stochastic planning with anonymity in
interactions. In Proc. of the AAAI Conference on
Artificial Intelligence, pages 2505–2512, 2014.

[18] P. Varakantham, S.-F. Cheng, G. Gordon, and
A. Ahmed. Decision support for agent populations in
uncertain and congested environments. In 26th AAAI
Conference on Artificial Intelligence (AAAI-12), pages
1471–1477, 2012.

[19] P. Varakantham, J. Y. Kwak, M. Taylor, J. Marecki,
P. Scerri, and M. Tambe. Exploiting coordination
locales in distributed POMDPs via social model
shaping. In Nineteenth International Conference on
Automated Planning and Scheduling, page 313âĂŞ320,
2009.

[20] P. Velagapudi, P. Varakantham, K. Sycara, and
P. Scerri. Distributed model shaping for scaling to
decentralized pomdps with hundreds of agents. In The
10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 3, pages 955–962.
International Foundation for Autonomous Agents and
Multiagent Systems, 2011.

[21] S. J. Witwicki and E. H. Durfee. Influence-based
policy abstraction for weakly-coupled dec-pomdps. In
Proceedings of the Twentieth International Conference
on Automated Planning and Scheduling, pages
185–192, 2010.

[22] Z. Yin and M. Tambe. Continuous time planning for
multiagent teams with temporal constraints. In
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pages 465–471, 2011.

