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Abstract

Bike Sharing System (BSS) is a green mode of transporta-
tion that is employed extensively for short distance travels in
major cities of the world. Unfortunately, the users behaviour
driven by their personal needs can often result in empty or
full base stations, thereby resulting in loss of customer de-
mand. To counter this loss in customer demand, BSS opera-
tors typically utilize a fleet of carrier vehicles for reposition-
ing the bikes between stations. However, this fuel burning
mode of repositioning incurs a significant amount of rout-
ing, labor cost and further increases carbon emissions. There-
fore, we propose a potentially self-sustaining and environ-
ment friendly system of dynamic repositioning, that moves
idle bikes during the day with the help of bike trailers. A bike
trailer is an add-on to a bike that can help with carrying 3-5
bikes at once. Specifically, we make the following key contri-
butions: (i) We provide an optimization formulation that gen-
erates “repositioning” tasks so as to minimize the expected
lost demand over past demand scenarios; (ii) Within the bud-
get constraints of the operator, we then design a mechanism
to crowdsource the tasks among potential users who intend
to execute repositioning tasks; (iii) Finally, we provide ex-
tensive results on a wide range of demand scenarios from a
real-world data set to demonstrate that our approach is highly
competitive to the existing fuel burning mode of repositioning
while being green.

Introduction
Due to its potential to mitigate the carbon emissions and
traffic congestion, Bike Sharing Systems (BSSs) have been
widely adopted in major cities across the world. According
to Meddin and DeMaio (2016), 1139 systems with a fleet of
over 1,445,000 bicycles are already installed in major cities
and additionally, 357 systems are either in planning stages
or under construction. Popular examples of BSS are Cap-
ital Bikeshare in Washington DC, Hubway in Boston, Bixi
in Montreal, Vélib’ in Paris, Wuhan and Hangzhou Public
Bicycle in Hangzhou etc. In a regular BSS, base stations are
scattered throughout a city and each station is stocked with a
pre-determined number of bikes at the beginning of the day.
According to personal needs, users with membership card
can pickup and drop-off bikes at any base station, each of
which has a finite number of docks. At the end of the work
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day, carrier vehicles (e.g., trucks) are used to rebalance the
entire system so as to return to some pre-determined config-
uration at the beginning of the day.

BSSs often experience a significant loss in customer de-
mand during the day due to the uncoordinated movements of
customers. Moreover, BSS companies (e.g., Vélib’ in Paris)
are often penalized by local governments for loss in cus-
tomer demand (Schuijbroek, Hampshire, and Van Hoeve
2017), as it can result in usage of fuel burning modes of
private transport. To address this problem, a wide variety
of research papers and current systems employ the idea of
repositioning idle bikes with the help of vehicles during the
day, by taking into account the movements of bikes by cus-
tomers. While such a method of repositioning can help re-
duce imbalance, there are multiple drawbacks: (a) Vehicles
incur substantial routing and labor costs; (b) More impor-
tantly, the fuel burning model of repositioning is at odds with
the environment friendly nature of BSSs; and (c) Finally, due
to a limited number of these vehicles, they are typically not
sufficient to account for all the lost demand.

As an alternative, some BSS operators (e.g., CitiBike in
NYC) have recently introduced the notion of bike trailers
(O’Mahony and Shmoys 2015). A bike trailer is an add-on to
a bike that can carry a small number of bikes (e.g., each bike
trailer can hold 3-5 bikes) and is useful to relocate bikes to
nearby stations. Trailers are an environment friendly mode
of repositioning the bikes. Existing research by O’Mahony
and Shmoys (2015) has focussed on computing the reposi-
tioning tasks for trailers with the assumption that dedicated
staff can execute the repositioning tasks. However, given the
limited budget availability, it is not economically viable to
employ dedicated staff for each of the trailers.

This paper introduces a potentially self-sustaining repo-
sitioning system that addresses this Dynamic Repositioning
and Routing Problem with Trailers (DRRPT). We employ
an unique combination of optimization and mechanism de-
sign that crowdsources the repositioning tasks to the poten-
tial users while working within the budget constraints of the
operator. Specifically, we provide a rolling horizon frame-
work, where at each time step we have two components ex-
ecuted one after another:

1. We first employ mixed integer linear optimization to gen-
erate potential repositioning tasks along with their valua-
tions at the next time step.



2. We employ an incentive compatible mechanism to crowd-
source (using payment/trip based incentives) the reposi-
tioning tasks to the users who are interested in executing
those tasks within the budget constraints of the operator.

There has been existing research (Singla et al. 2015;
Pfrommer et al. 2014) that has focussed on providing in-
centives to users for assisting with repositioning. However,
this line of work has primarily focussed on individual bikes
and has taken a myopic (individual station) view on whether
a bike is required at a station. In this work, we provide an
end to end system that takes the global view (all stations)
of the repositioning requirements and incentives their exe-
cution within the budget constraints.

We evaluate our system using a simulation model which
is built on the realized demand scenarios from a real-world
data set. At each time step the two components of the rolling
horizon framework are executed on this simulator to identify
the distribution of bikes for the next time step. This iterative
process continues until we reach the last time step. Exper-
imental results on multiple synthetic and a real-world data
set of Hubway (Boston) BSS demonstrate that our approach
is highly competitive in terms of reducing the expected lost
demand, over the fuel burning model of repositioning.

Related Work
Given the practical importance of BSSs, repositioning prob-
lem has been studied extensively in the literature. We cate-
gorize existing research into three threads: (a) Static and (b)
Dynamic repositioning using carrier vehicles; (c) Incentiviz-
ing customers and utilizing trailers for repositioning.

Static repositioning is the problem of finding routes for
a fleet of vehicles to reposition bikes at the end of the day
when the movements of bikes by customers are negligible,
to achieve a pre-determined inventory level at the base sta-
tions. Chemla, Meunier, and Wolfler Calvo (2013) employ
branch and cut algorithm to solve the static repositioning
problem with more than a hundred stations. Benchimol et
al. (2011) propose an approximate solution for the static re-
balancing and routing problem with a single vehicle using
insights from the solution of C-delivery TSP (Chalasani and
Motwani 1999). Raviv, Tzur, and Forma (2013) and Raviv
and Kolka (2013) provide scalable approximate solutions
for multiple vehicles using mathematical optimization mod-
els where they design an objective function that penalizes
unavailability of bikes or empty docks. Di Gaspero, Rendl,
and Urli (2013; 2015) employ constraint programming (CP)
to efficiently solve the static repositioning problem using
large neighbourhood search. As the uncertainty and changes
in demand alter the station inventory level, these static app-
roaches are not suitable to solve our problem during the day.

Dynamic repositioning is referred to as the case when
the movements of customers during the day are consid-
ered in the planning period. Nair and Miller-Hooks (2011)
and Nair et al. (2013) provide a dynamic repositioning ap-
proach by employing dual-bounded joint-chance constraints
to ensure that the predicted near future demand is served
with a certain probability. Schuijbroek, Hampshire, and
Van Hoeve (2017) develop a scalable approximate solu-

tion by clustering the base stations using maximum span-
ning star (MAXSPS) and allocate one vehicle in each clus-
ter so as to meet the service level requirements. Further-
more, they represent the problem as a clustered vehicle rout-
ing problem [CluVRP] (Battarra, Erdogan, and Vigo 2014)
and solve it in an online fashion. Contardo, Morency, and
Rousseau (2012) present a scalable myopic repositioning so-
lution by considering the current demand that was recently
observed and solve it using Dantzig-Wolfe and Benders de-
composition techniques. Recently, Lowalekar et al. (2017)
propose a scalable online repositioning solution using multi-
stage stochastic optimization and online anticipatory algo-
rithms. Ghosh, Trick, and Varakantham (2016) propose a
robust and online repositioning approach for the vehicles
to counter the uncertainty in future demand. In contrast to
the rolling horizon based online solutions, Shu et al. (2010;
2013) consider the future expected demand for a long period
to deal with the future demand surges and propose an opti-
mization model for dynamic repositioning to minimize the
number of unsatisfied customers. However, they did not con-
sider the specific routing constraints and the physical limi-
tations of the vehicles in their model. Ghosh et al. (2015;
2017) overcome this concern by jointly considering the dy-
namic repositioning of bikes in conjunction with the routing
problem for vehicles. Our approach differs from this thread
of research as we are utilizing the bike trailers for reposition-
ing and crowdsourcing the tasks to customers in contrast to
using vehicles with dedicated staffs for repositioning.

The last thread of research focuses on incentivizing cus-
tomers and utilizing trailers for rebalancing the system.
There has been existing research in bike sharing (Singla et
al. 2015; Pfrommer et al. 2014) and car sharing (Chow and
Yu 2015; Mareček, Shorten, and Yu 2016) that present pric-
ing mechanisms to provide incentives to users for assisting
with repositioning. However, this line of work has taken a
myopic (individual station) view on whether a bike or car is
required at a station. Furthermore, unlike car sharing (Chow
and Yu 2015), the BSS operators cannot order users based
on their utility and operate within tight budget constraints.
In this work, we provide an end to end system that takes the
global view (all stations) of the repositioning requirements
and incentives their execution within the budget constraints.

On the other hand, O’Mahony and Shmoys (2015) predict
the service level requirements for base stations in rush hours
and introduce the notion of repositioning with bike trailers,
by matching each trailer to its suitable producer and con-
sumer stations, based on the assessment of inventory state
of the base stations. However, they assume that all the tasks
for the trailers can be achieved with dedicated staff which is
not an economically viable option. In contrast, we propose
an optimization model to generate the repositioning tasks for
trailers and design a mechanism to crowdsource those tasks
to the users while ensuring the given budget constraints.

Model: DRRPT
In this section, we formally describe the generic model of
Dynamic Repositioning and Routing Problem using Trail-
ers (DRRPT) extending from the DRRP model introduced



by Ghosh et al. (2015; 2017). DRRPT is compactly repre-
sented using the following tuple:

< S,V,C#,C∗, d#,0, {σ0
v},H,F , B >

S denotes the set of base stations where C#
s represents the

capacity of the station s ∈ S. We have a set of bike trailers
V where C∗v denotes the number of bike slots in the trailer
v ∈ V . d#,0 represents the initial distribution of bikes in
the stations. σ0

v symbolises the initial locations of the trail-
ers, i.e., σ0

v(s) is fixed to 1 if trailer v is stationed at s ini-
tially and 0 otherwise. H denotes a two dimensional matrix
that stores the relative distance between each pair of stations.
F represents a set of K discrete training demand scenarios.
Specifically, F k

s,s′ denotes the demand for the planning pe-
riod for scenario k that arises at station s and reaches station
s′ in the next time step. Finally, B denotes the amount of
budget allocated for the repositioning tasks for a given plan-
ning period.

We make the following assumptions for the ease of expla-
nation and representation. However, these assumptions can
easily be relaxed with minor modifications to our methods;
(a) In the similar direction of Ghosh, Trick, and Varakan-
tham (2016), we assume that users who carry bikes and trail-
ers at decision epoch t always return their bikes at the be-
ginning of the decision epoch t + 1; (b) Customers are im-
patient in nature and leave the system if they encounter an
empty station. On the other hand, they return their bikes to
the nearest available station if the destination station is full.

Solving DRRPT
We propose a rolling horizon framework for solving DR-
RPT, where the following two components are run continu-
ously at each time step:
• Generate repositioning tasks for the next time step;
• Mechanism to incentivize execution of tasks (within the

central budget constraints) by interested users.

Generating Repositioning Tasks
In this section, we describe the method for computing repo-
sitioning tasks for the trailers and also estimate the valua-
tions of those tasks from center’s perspective. As a trailer
can travel at most to one station in each time step (equiva-
lent to bikes), the repositioning task for a trailer is to pickup
a certain number of bikes from the neighbourhood of its ori-
gin station and drop them to another station. To formally
represent the repositioning tasks, we introduce the follow-
ing decision variables:
• y+s,v denotes the number of picked up bikes by trailer v

from station s;
• y−s,v denotes the number of bikes dropped off by trailer v

at station s;
• b+s,v is a binary decision variable which is set to 1 if

trailer v picks up bikes from station s and 0 otherwise;
• b−s,v represents a binary decision variable which is set to

1 if trailer v returns bikes at station s and 0 otherwise.
In addition, we use the symbol Gv to denote the set of

neighbouring stations from where vehicle v is allowed to

min
y

∑
s,k

Lk
s (1)

s.t. Lk
s≥
∑
s′

F k
s,s′−

(
d#,t
s +

∑
v

(y−s,v− y+s,v)
)
,∀k, s (2)

y+s,v ≤ b+s,v ·min(d#,t
s , C∗v ), ∀s, v (3)∑

v

y+s,v ≤ d#,t
s , ∀s (4)∑

v

y−s,v ≤ C#
s − d#,t

s , ∀s (5)

y−s,v = b−s,v ·
∑
s

y+s,v, ∀s, v (6)

(b+s,v + b−s′,v − 1) ·Hs,s′ ≤ Hmax, ∀s, s′, v (7)∑
s

b+s,v = 1, ∀v (8)∑
s/∈Gv

b+s,v = 0, ∀v (9)

∑
s

b−s,v = 1, ∀v (10)

b+s,v, b
−
s,v ∈ {0, 1}; y+s,v, y−s,v ≤ C∗v ;Lk

s ≥ 0 (11)

Table 1: TASKGENERATION(F,t,d#,drrpt)

pick up bikes. A station is included in Gv if it is situated
within a threshold distance from the origin station of trailer
v. Our goal is to compute the best routing and repositioning
strategy for each of the bike trailers so as to minimize the
total number of expected lost demand over K training de-
mand scenarios. Let Lk

s denotes the lost demand at station
s for demand scenario k, after the repositioning tasks are
achieved. We represent the problem of minimizing expected
lost demand as a Mixed Integer Linear Programme (MILP).
The MILP for the task generation is compactly represented
in Table (1). Our objective (delineated in expression 1) is to
minimize the expected lost demand (equivalent to total lost
demand, as each scenario has equal probability) over all the
K training scenarios. The constraints associated with this
repositioning task generation are described as follows:

1. Compute the lost demand as the deficiency in supply
of bikes: The number of bikes present in a station s af-
ter accomplishing the repositioning task is estimated as
d#,t
s +

∑
v(y−s,v − y+s,v). Therefore, constraints (2) ensure

that the number of lost demand at station s for scenario
k is lower bounded by the difference between demand
and supply of bikes at that station. Note that, as we are
minimizing the sum of lost demand over all the scenarios,
these constraints are sufficient alone to compute the exact
number of loss in customer demand.

2. Trailer capacity is not exceeded while picking up
bikes: Constraints (3) ensure that the number of bikes
picked up by trailer v from station s is bounded by the
minimum value between the number of bikes present in
the station and the capacity of the trailer.



3. Total number of bikes picked up from a station is less
than the available bikes: As multiple trailers can pick up
bikes from the same station, constraints (4) enforce that
the total number of picked up bikes by all the trailers from
station s during the planning period t is bounded by the
number of bikes present in the station, d#,t

s .

4. Station capacity is not exceeded while dropping off
bikes: Constraints (5) ensure that the total number of
dropped off bikes at station s is bounded by the number
of available slots for bikes at that station.

5. A trailer should return the exact number of bikes it
has picked up: Note that b−s,v is the binary decision vari-
able that controls the drop-off location for the trailer v.
Therefore, constraints (6) enforce that the number of bikes
dropped off by a trailer in a station is exactly equals to the
number of picked up bikes if the station is visited.

6. Total traveling distance for a trailer is bounded by a
threshold value: To represent the physical limitation of
route, we need to ensure that the total distance travelled
by a trailer in a given planning period is within a few kilo-
meters. Constraints (7) enforce this condition by ensuring
that the distance between the pick up and the drop-off sta-
tion for a trailer is bounded by a threshold value, Hmax.

7. A trailer should pick up bikes from one station only:
Constraints (8) enforce this condition by allowing only
one pick up decision variable to be set to 1 for each trailer.

8. The pick up location for a trailer should be within
the geographical proximity of its origin station: Con-
straints (9) assure this requirement by fixing all the pick
up decision variables for trailer v to 0 for the stations
which does not belong to its nearby station set, Gv .

9. A trailer should return bikes to one station only: Con-
straints (10) ensure this condition by allowing only one
drop-off decision variable to be set to 1 for each trailer.

Note that, constraints (6) are non-linear in nature. How-
ever, one component in the right hand side is a binary vari-
able. Therefore, we can easily linearize them using the fol-
lowing constraints (12)-(14).

y−s,v ≤ C∗v · b−s,v ∀s, v (12)

y−s,v ≤
∑
s

y+s,v ∀s, v (13)

y−s,v ≥
∑
s

y+s,v − (1− b−s,v) · C∗v ∀s, v (14)

Although we are using big-M method for the linearization,
the upper bound for the pickup or drop-off variable (or alter-
natively the value of M) is the capacity of the trailer which
is relatively small and therefore, these constraints are com-
putationally inexpensive.

Mechanism to Incentivize Task Execution within
Budget Constraints
Once we determine the tasks, our goal is to design a mech-
anism which allocates the tasks among the users who are
interested in executing these tasks and generate a payment

method to ensure that the users bid for the tasks truthfully. If
the payment method does not ensure truthful behaviour, then
either the bike sharing operators are unhappy (as they pay
more money to users than required) or users are unhappy (as
they get paid less) while repositioning bikes through trailers.

To design a mechanism for crowdsourcing the reposition-
ing tasks, the first step is to compute the value of the tasks
from center’s perspective. As our goal is to minimize the ex-
pected lost demand, the valuation of the task is proportional
to the expected lost demand reduced by the trailer job over
all the training demand scenarios. Specifically, the value of
task for trailer v is defined as follows (ξ represents unit value
of lost demand to compute overall value):

U(v)=
ξ

K

∑
k,s

[
min

(
max(

∑
s′

F k
s,s′ − d#,t

s , 0), y+s,v
)
−

min
(
max

(
y−s,v−(d#,t

s −
∑
s′

F k
s,s′), 0

)
, y−s,v

)]
(15)

Intuitively this value is the weighted difference in reduced
lost demand using the trailer minus increase in lost demand
due to moving bikes using trailer. The first term in equa-
tion (15) computes the expected lost demand reduced by
trailer v in its destination station over K scenarios. The sec-
ond term computes the expected lost demand arising be-
cause of the pickup decision by trailer v at its origin station.

We assume that the set of interested users for each pair
of tasks are disjoint. One user can execute a single task in
any given decision epoch, so this assumption can be easily
enforced. To ensure this assumption is satisfied, we can ei-
ther associate a huge penalty for bidding on multiple tasks
or discard all bids of a user except the first one. Once all
the bids arrive, the goal of the center is two-fold: (a) Design
an incentive compatible mechanism to ensure that users bid
truthfully on every task; (b) Allocate the tasks in a fashion
that maximizes the efficiency of the entire system while sat-
isfying the budget feasibility.

Observation 1 As the set of bidders for different tasks are
pairwise disjoint and the mechanism initiates once all the
bid information is available, the tasks are primarily inde-
pendent but coupled by the central budget constraint. There-
fore, the mechanism or payment method can be designed for
each of the tasks separately. However, the final allocation of
tasks should be accomplished in a fashion so that the budget
feasibility is ensured.

By exploiting observation (1), we design a mechanism
for each of the tasks separately. Let the set of reposition-
ing tasks be T = {1, ..., |V|}. We begin the discussion with
the mechanism design for a single task for trailer v. Let,
Nv = {1, ..., nv} represents the set of rational users who are
bidding privately to the center for the task of trailer v. Each
user i ∈ Nv privately reveals their type θi =< Ci(v) >,
where Ci(v) denotes their private cost for executing the task
of trailer v. The center’s profit for the bid of user i is defined
as Wi(v) = U(v) − Ci(v). We reject a bid from a user i if
Ci(v) > U(v), which ensures that Wi(v) is always positive.
Our goal is to assign the task to a bidder so that the cen-
ter’s profit is maximized and design a payment method to



ensure that users always bid truthfully. We use the standard
Vickrey-Clarke-Groves [VCG] mechanism (Vickrey 1961;
Clarke 1971; Groves 1973) to solve this problem.

According to this mechanism, the task is always allocated
to the lowest bidder, but the lowest bidder gets paid the bid
of the second lowest bidder. For instance, if there are 3 bids
of 10$, 12$ and 14$ to perform a repositioning task, then
the task is allocated to bid 1 and the person putting in bid 1
gets paid 12$. More formally, let λ∗ = {0, 1}Nv denotes the
allocation of the task so that the center’s profit is maximized.

λ∗i (v) =

{
1 if i = argmaxj∈Nv Wj(v)
0 Otherwise

}
Then the payment to the user i for task v is computed using
the following expression:

Pi(v) =λ∗i (v)
[
U(v)−max

j 6=i
Wj(v)

]
= λ∗i (v)

[
min
j 6=i

Cj(v)
]

(16)

Equation (16) indicates that the payment for user i is the
second lowest cost revealed in the bid process if the task is
allocated to him, otherwise the payment is set to 0.

Since, we directly adapt the standard VCG mechanism,
the mechanism for single task is truthful or incentive com-
patible. However, this does not ensure incentive compatibil-
ity over all tasks, as there is a budget constraint. We now pro-
vide a method that will ensure incentive compatibility over
all tasks without violating the budget feasibility.
Ensuring the Budget Feasibility: As mentioned previ-
ously, the BSS operators work within a fix budget B. We
have a set of tasks T = {1, ..., |V|}, where each task v ∈ T
has a valuation, U(v) (computed using equation 15) and the
payment for the task is denoted by P (v) (computed using
equation 16). Our goal is to allocate the tasks in a fashion
that maximizes the overall valuation of the center while the
total payment is bounded by the given budget, B. Let x(v)
denotes a binary decision variable which is set to 1 if task
v is allocated and 0 otherwise. We compactly represent the
problem as an Integer Program (IP) in table (2).

max
x

∑
v∈T

x(v) · U(v) (17)

s.t.
∑
v∈T

x(v) · P (v) ≤ B (18)

x(v) ∈ {0, 1} ∀v ∈ T (19)

Table 2: TASKALLOCATIONIP(U ,P , T , B)

Our objective in expression (17) aims to find an alloca-
tion of the tasks so that the cumulative valuation from the
center’s perspective is maximized. Constrains (18) enforce
that the total payment made to the users due to the result-
ing allocation should respect the given budget B. The IP in
Table (2) is exactly equivalent to the 0/1 knapsack problem
which is a known NP-Hard problem. However, we can em-
ploy the well-known dynamic programming (DP) approach

(refer to chapter 6 of Dasgupta, Papadimitriou, and Vazirani,
2006) to speed up the solution process. The complexity of
such a DP approach is O(|T | ·B) in comparison to the brute
force method that has the complexity of O(2|T |).
Proposition 1 The mechanism for task allocation for the
trailers in bike sharing system is incentive compatible (IC),
individually rational (IR) and economically efficient (EE).
Proof: The mechanism for single task satisfies the IC and IR
property as it follows the standard VCG mechanism. As all
the tasks are independent and payments are made for a sub-
set of tasks to ensure the budget feasibility, all the allocated
tasks satisfy the IC and IR property. Hence, the budget feasi-
ble mechanism for the entire BSS meets the requirements to
satisfy the IC and IR property. Finally, the mechanism maxi-
mizes the difference between center’s valuation and the cost
for executing the task which is equivalent to expected total
welfare, hence, our mechanism satisfies the EE property. �

Overall Flow of Our Approach
To better understand the overall flow of our approach, we
provide Algorithm (1). We begin by solving the MILP of
Table (1) to generate the repositioning tasks for each of the
trailer to better satisfy customer demand over a set of train-
ing demand scenarios. Then the values of the tasks from
center’s perspective are computed using equation (15) and
broadcasted to the users. Next, a set of rational users bid
for the tasks privately. Once all the bids are submitted, we
employ the standard VCG mechanism to generate the pay-
ment (refer to equation 16) for each task. Finally, we allocate
budget to tasks (and make payments only if the task can be
allocated money) by solving a 0/1 knapsack problem that
maximizes the global welfare of the system without violat-
ing the budget constraints of the operator.

Algorithm 1: solveRepositioning(drrpt, t,d#,F t, B)

Initialize: Y +,Y − ← 0 ;

Y +,Y − ← TASKGENERATION(F t, t,d#, drrpt);
for each v ∈ V do

U(v)← COMPUTETASKVALUE(Y +
v , Y

−
v );

for each v ∈ V do
C(v)← COLLECTBIDS(Y +

v , Y
−
v , U(v));

for each v ∈ V do
P (v)← GENERATEPAYMENT(U(v),C(v));

X ← TASKALLOCATION(U ,P ,V, B);
for each v ∈ V do

Y +
v ← Y +

v ·X(v);

Y −v ← Y −v ·X(v);

return Y +,Y −;

Empirical Evaluation
In this section, we explain the simulation model used to ex-
ecute the tasks, the benchmark approaches implemented for
the computational comparisons and the experimental results.



Simulation Model
Once the repositioning tasks for the trailers and their al-
locations are determined for a time step, we execute them
on a simulator (adapted from Ghosh, Trick, and Varakan-
tham 2016) for evaluating their performance on the realized
demand scenario for that particular time step.

Let, f ts,s′ denotes the number of customers who arrive in
station s at time step t and plan to reach station s′ at the be-
ginning of time step t+1. Let, d#,t

s represents the number of
bikes present in station s at time step t after the reposition-
ing tasks are completed. Due to the repositioning, the num-
ber of bikes available in stations changes and therefore, the
flows of bikes by the customers also change in comparison
to the observed data denoted by f . However, a reasonable
assumption employed in previous works (Shu et al. 2013;
Ghosh et al. 2017; Ghosh, Trick, and Varakantham 2016)
for any configuration is that the aggregated transition prob-
abilities between stations that is observed in the data remain
the same during execution.

Therefore, the flows of bikes between the stations are de-
termined based on the following two cases: (a) If the arrival
demand at a station is less than the number of bikes present
in that station, then all the customers are able to hire bikes;
(b) If the arrival demand at a station is higher than the num-
ber of bikes present in that station, then the actual flow of
bikes (denoted as xts,s′ ) is computed using the relative ratio

ft
s,s′∑

s′ f
t
s,s′

as shown in equation (20).

xts,s′ =

{
f ts,s′ if

∑
s′ f

t
s,s′ ≤ d#,t

s
ft
s,s′∑
s̃ ft

s,s̃
· d#,t

s Otherwise

}
(20)

Once the actual flow of bikes by the customers at time step
t is determined, we calculate the distribution of bikes in sta-
tion s at time step t+ 1 as the sum of un-hired bikes at time
step t, the net incoming bikes in station s at the beginning of
time step t+ 1 and the net drop-off bikes at station s by the
trailers at time step t+ 1 (i.e., Y −,t+1

s − Y +,t+1
s ).

d#,t+1
s =d#,t

s +
[∑

s̃

xts̃,s−
∑
s′

xts,s′
]
+
[
Y −,t+1
s −Y +,t+1

s

]
(21)

Equation (21) for computing the number of bikes in station s
at time step t+1 (i.e., d#,t+1

s ) does not take into account the
station capacity constraints. To handle such boundary con-
ditions and to ensure the capacity constraints are considered
for the stations, we transfer extra bikes (i.e., d#,t+1

s −C#
s ) to

the nearest available station if d#,t+1
s exceeds the station ca-

pacity, C#
s . In our experimental results, we show these extra

numbers as the lost demand at the time of return. Once the
distribution of bikes across the stations for time step t+ 1 is
obtained, we utilize this information to compute the reposi-
tioning strategy for trailers for time step t+ 1. This iterative
process continues until we reach the last decision epoch.

Experimental Setup
We conducted our experiments on a real-world data set1 of
Hubway BSS. The Hubway data set contains the following

1Data is taken from Hubway bike sharing company of Boston
[http://hubwaydatachallenge.org/trip-history-data].

details: (1) Customer trip records, from which we compute
demand for each origin destination pair at each time step;
(2) The number of stations, their capacity and initial distri-
bution of bikes at the stations; (3) Geographical locations
of base stations to calculate the distance between two sta-
tions; (4) The number of vehicles used for repositioning and
their capacity. Furthermore, we generate two sets of syn-
thetic demand scenarios using Poisson distribution with the
mean computed from real-world data set. More specific de-
tails about these synthetic data sets are mentioned later. We
evaluate our approach with respect to the key performance
metric of loss in customer demand. We compare the utility
of our approach with two existing benchmark approaches.
Benchmark-1: Static Repositioning implies the practice of
no repositioning during the day. The vehicles are only used
at the end of the day to rebalance stations to achieve a pre-
defined inventory level. We use this as a baseline approach
where no repositioning is done during the planning period.
Benchmark-2: Dynamic Repositioning implies the prac-
tice of repositioning idle bikes using vehicles during the day
to meet the expected future demand. We adapted a recently
developed scenario based approach from Ghosh, Trick, and
Varakantham (2016). In their iterative approach, a worse de-
mand scenario is generated in each iteration to counter the
repositioning strategy of the current iteration and then they
produce a robust repositioning solution by considering all
the previously generated scenarios. However, for a fair com-
parison with our approach (as shown in Table 1), we make
the following modifications in their optimization model: (1)
We take the exact set of training demand scenarios used in
our approach rather than generating the worse case scenar-
ios; (2) We minimize the total number of lost demand over
all the demand scenarios (equivalent to our objective func-
tion of Table 1) in contrast to optimizing for the worst case.

To ensure a fair comparison, all the benchmark ap-
proaches and our approach are evaluated on the simulation
model described in the previous subsection.

Empirical Results
We now show the performance2 of our approach on Hub-
way data set. The Hubway BSS consists of 95 base stations
and 3 vehicles. We study with 10 trailers and their capac-
ity is assumed to be three in our default settings of experi-
ments. We take 6 hours of planning horizon in the morning
peak (6AM-12PM) and the duration of each decision epoch
is considered as 30 minutes. The demand scenarios are gen-
erated from three months of historical trip data. As the trip
data only contains successful bookings and does not capture
the unobserved lost demand, we employ a micro-simulation
model (courtesy: Ghosh, Trick, and Varakantham 2016) with
1 minute of time step to determine the time slots when a sta-
tion was empty and introduce artificial demand at the empty
station based on the observed demand at that station in pre-
vious time step. We demonstrate three sets of results on the
Hubway data set:

2All the linear optimization models were solved using IBM
ILOG CPLEX Optimization Studio V12.5. incorporated within
python code.
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Figure 1: Lost demand statistics for (a) Demand scenarios from real-world data; (b) Demand scenarios follow Poisson distribution at origin
station; (c) Demand scenarios follow Poisson distribution for each OD pair.
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Figure 2: (Average) Lost demand statistics for varying (a) Allocated budget (β) [α = 0.3, γ = 0.3]; (b) Percentage of users interested in
trailer tasks (γ) [α = 0.3, β = 50]; (c) Ratio of lower and upper bound of bids (α) [β = 50, γ = 0.3].

• The performance comparison between our approach and
the benchmarkss in terms of reducing the lost demand;

• The effect of key tunable input parameters on the mech-
anism design over a wide range of demand scenarios;

• Runtime performance of our approach.
Performance comparison: To evaluate the performance of
our approach, we produce three types of demand scenarios:
(1) We took the real demand data for 60 weekdays. The ac-
tual demand is estimated by introducing artificial demand at
empty stations using a similar heuristic as discussed earlier.
We use 20 days of demand scenarios for training purpose
and other 40 days of demand for testing; (2) We generate 100
demand scenarios, where the arrival demand at each station
is generated using Poisson distribution with the mean com-
puted from historical data. Similar to Shu et al. (2013), we
assume that customers reach their destination station with
a fixed probability; (3) We generate 100 demand scenarios,
where demand for each origin destination [OD] pair at each
time step is computed using Poisson distribution. For the de-
mand scenario types 2 and 3, we use 30 demand scenarios
for training and 70 demand scenarios for testing.

For all the three types of demand scenarios, we compute
the cumulative lost demand at the time of bike pickup and re-
turn for the following four approaches: (a) Static reposition-
ing, i.e., no rebalancing is done during the planning period;
(b) Dynamic repositioning using 3 existing vehicles; (c) Dy-
namic repositioning using 10 trailers, each having a capacity
of 3; (d) Dynamic repositioning using 10 trailers, each hav-
ing a capacity of 5. For this set of experiments, we assume
that there is sufficient budget available to allocate all the
tasks. Therefore, we directly took the repositioning solution

from Table (1) for evaluation. Figure (1) depicts the average
number of lost demand along with standard deviation for all
the three types of demand scenarios. Figure 1(a) shows the
lost demand statistics on the real-world demand scenarios.
By utilizing trailers with capacity 3, the average lost demand
over 40 testing scenarios reduces by 41% over the no reposi-
tioning approach. The repositioning solutions for the trailers
with capacity 3 are also proven to be highly competitive to
the solutions achieved by vehicles. As expected, the repo-
sitioning solutions for the trailers with capacity 5 produce
better results and outperform the lost demand obtained by
3 carrier vehicles. Similar performance statistics are shown
in Figures 1(b) and 1(c) for the demand scenarios generated
using Poisson distribution at origin station and for each OD
pair respectively. In both the settings, we observe a consis-
tent pattern that the repositioning solution using trailers with
capacity 3 reduces the average lost demand over 70 test sce-
narios by 69% and 63% in comparison to the baseline ap-
proach. Moreover, both the figures clearly demonstrate that
the solutions for trailers with capacity 5 are better than the
fuel burning mode of repositioning by the vehicles.
Effect of tunable parameters: In the next set of results we
demonstrate the performance of our approach by varying the
different input parameters of the mechanism. We employ the
real-world demand scenarios (demand scenario type 1) for
these experiments, where 20 demand scenarios are used for
training and the evaluation is done on other 40 scenarios.
The outcome of the mechanism depends on the following
three input parameters:

• Hourly budget allocated by the operators (β): Ideally the
BSS operators allocate a fixed amount beforehand for



the repositioning tasks. In our default settings of experi-
ments we have fixed the hourly budget to 50 dollars3;

• Percentage of users interested in trailer tasks (γ): To exe-
cute a mechanism, it is important to compute the number
of users bidding for each trailer task. Typically, a certain
percentage of users whose origin and destination loca-
tion is within ∆ kilometer of the pickup and drop-off
location of the trailer, are the potential users interested
in executing the task and bid for it. In our experiments
we set the value of ∆ to 1 kilometer4. We use the default
value of γ as 30%;

• Ratio of lower and upper bound of bids (α): The third
and most important parameter for the mechanism is the
bid values submitted privately by the users. We gener-
ate the bid values using Gaussian distribution5 from the
range [Cmin, Cmax]. As the upper limit of the bid value
for task v is bounded by its valuation U(v), we set the
Cmax for the task of trailer v to U(v). The value of Cmin
is set to αCmax. As the bids are generated from a distri-
bution, we run the mechanism 100 times for every task
and use the expectation over 100 runs as the payment.
The default value of α is set to 30%.

Figure (2) depicts the effect of the tunable parameters on
the performance of our approach. Figure 2(a) plots the av-
erage lost demand over 40 days of testing demand scenar-
ios, where we vary the hourly budget (β) in the X-axis from
10 dollars to 80 dollars. As expected, the average number
of lost demand reduces monotonically as we increase the
hourly budget. Due to the randomness in bid values in dif-
ferent runs, the lost demand might increase for some scenar-
ios, even after increasing the hourly budget. We observe that
for more than 78% of the cases, lost demand decreases if we
increase the hourly budget by 10 dollars.

Figure 2(b) plots the average lost demand over 40 testing
demand scenarios, when we vary the interest rate of the users
(γ) in the X-axis from 10% to 70%. The average number of
lost demand reduces monotonically as we increase the inter-
est rate of users, because increasing the interest rate implies
that additional bids are submitted to the center and there-
fore, the likelihood of the payment value reduces which in
turn enable us to execute extra trailer tasks within the given
budget, hence, the number of expected lost demand reduces.
We observe that the lost demand decreases for around 60%
of the cases, if we increase γ by 10%.

Figure 2(c) plots the average lost demand over 40 testing
demand scenarios, where we vary the ratio of the lower and
upper bound of the bids (α) in the X-axis from 20% to 90%.

3The link: http://www.bls.gov/oes/current/oes533033.htm from
the US Department of Labor provides hourly salaries for drivers
operating light trucks that are used for repositioning the bikes. It
shows that the median hourly cost for a hired driver is 14 dollars.
Therefore, the hourly budget for 3 existing vehicles including the
fuel cost for routing would be around 50 dollars.

4We experimented with ∆ as 0.5 kilometer and observe similar
results as shown in Figure 2.

5We choose Gaussian bids, because existing work (Singla et
al. 2015) in bike sharing that experimented with real humans em-
ployed Gaussian distribution for representing user bids.

Increasing the value of α indicates that the lower bound of
the bids increases, so the expected bid value also increases.
Now, increase in the bid values implies that the expected
payment for the tasks also increases and the number of tasks
that can be executed within a fixed budget decreases, hence,
the number of expected lost demand also increases. As ex-
pected, Figure 2(c) clearly depicts that the average number
of lost demand increases monotonically as we increase the
value of α. For around 74% of the cases, the lost demand
increases if we increase α by 10%.
Runtime performance: In the last set of results, we show
the runtime performance of our approach in comparison to
the repositioning solution of the vehicles on the real-world
demand scenarios. The time to find a repositioning solution
is a crucial factor in our settings, as we are generating the
strategy after every 30 minutes of interval. Figure (3) de-
picts the runtime performance where in the X-axis we vary
the number of decision epochs and the Y-axis denotes the
cumulative runtime in logarithmic scale. For every value of
decision epoch, our approach was able to solve the problem
within a couple of seconds with 95 stations and 20 training
scenarios. On the other hand, it took more than 15 minutes
for each decision epoch to generate the solutions for the ve-
hicles with the same number of training scenarios.
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Figure 3: (Cumulative) Runtime comparison between the reposi-
tioning solutions of vehicles and trailers.

Conclusion
In this paper we explore the dynamic repositioning problem
in bike sharing systems with the help of bike trailers. We
propose a novel optimization model to generate the repo-
sitioning tasks for the trailers to better meet the customer
demand. Additionally, we design a budget feasible incentive
compatible (incentivizes truth telling) mechanism to crowd-
source the tasks among the users who are interested in exe-
cuting those tasks. The empirical results on a real-world data
set show that our green mode of repositioning is economi-
cally viable and highly efficient in terms of reducing the lost
demand. In future this work can be extended in the follow-
ing directions: (a) Developing a budget feasible mechanism
by considering the uncertainties in completion time of the
trailer tasks; (b) Developing a model that jointly consider
the dynamic repositioning problem for vehicles and trailers
and discover an efficient solution while ensuring the central
budget constraint.
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