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ABSTRACT
Collaborative networks are a special type of social network
formed by members who collectively achieve specific goals,
such as fixing software bugs and resolving customers’ prob-
lems. In such networks, information flow among members
is driven by the tasks assigned to the network, and by the
expertise of its members to complete those tasks. In this
work, we analyze real-life collaborative networks to under-
stand their common characteristics and how information
is routed in these networks. Our study shows that col-
laborative networks exhibit significantly different proper-
ties compared with other complex networks. Collaborative
networks have truncated power-law node degree distribu-
tions and other organizational constraints. Furthermore, the
number of steps along which information is routed follows
a truncated power-law distribution. Based on these obser-
vations, we developed a network model that can generate
synthetic collaborative networks subject to certain struc-
ture constraints. Moreover, we developed a routing model
that emulates task-driven information routing conducted by
human beings in a collaborative network. Together, these
two models can be used to study the efficiency of informa-
tion routing for different types of collaborative networks –
a problem that is important in practice yet difficult to solve
without the method proposed in this paper.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Model and Principle—Hu-
man information processing; Human

General Terms
Algorithms, Human Factors

Keywords
Information Flow, Collaborative Networks, Social Routing

1. INTRODUCTION
Social networks as a means of communication have at-

tracted much attention from both industry and academia.
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The studies so far have focused predominantly on public
social networks, such as Facebook, Twitter, etc., which sup-
port social interactions and information exchange among
users. In this paper, we study another type of social net-
work, collaborative networks, that are formed by members
who collaborate with each other to achieve specific goals.
Such collaborative networks often exist on the Web, such
as open source software development sites, e.g., Eclipse [2]
and Mozilla [3] supported by Bugzilla [1], and in the private
sector such as customer service centers [18].
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Figure 1: Task-driven information flow.

Information flow in collaborative networks is drastically
different from that in public social networks [31]. In public
social networks, information generated at a source spreads
through the network with its members’ forwarding activi-
ties [8, 13, 22, 25, 33]. The forwarding activities fade away
as the information loses its value. In collaborative networks,
information flow is driven by certain tasks. As illustrated
in Figure 1, a task is initiated by or assigned to a source,
and then routed through the network by its members until
it reaches the person(s) who can handle it. The purpose of
routing is to find the right person(s) for the task, not to in-
fluence others. The routing conducted by a member is based
on (1) understanding of the expertise required to complete
the task, and (2) awareness of other members’ expertise. For
example, in fixing software bugs, the bug report is the infor-
mation routed in a developer network. If a developer cannot
fix the bug, he/she will attempt to forward the bug report
to another developer who he/she thinks is capable of fixing
it. Table 1 shows one of the bug activity records extracted
from the Eclipse development Web site.

The structure of collaborative networks usually evolves to
facilitate the execution of tasks. It is desirable to determine
whether the efficiency of the process can be improved. Ef-

WWW 2012 – Session: Collaboration in Social Networks April 16–20, 2012, Lyon, France

849



Table 1: Eclipse bug activity record.
Bug description:
NullPointerException referencing non-existing plugins.

Who When Description

dean
2001-11-01 Added component Core.
07:17:38 EST Reassigned.

rodrigo
2001-11-20 Added component UI.
18:53:40 EST Reassigned.

dejan
2002-01-09 Converted the unresolved
20:46:27 EST plugin to a link. Fixed.

https://bugs.eclipse.org/bugs/show_activity.cgi?id=325

ficiency can be measured by the number of steps it takes
to navigate a task through a network to reach its resolver.
For instance, a service provider might want to optimize the
staffing structure of a call center, based on the expertise of its
agents and the interactions between different agents. Such
optimization might shorten the response time; however, it
presents a challenge — one has to come up with recommen-
dations without altering the network, an experiment that is
not affordable in practice.

To address this challenge, we provide in this paper an un-
derstanding of how collaborative networks are structured,
and how their structures affect the efficiency of task execu-
tion. More importantly, we present a simulation-based ap-
proach that allows various hypotheses to be tested with low
cost. In general, a collaborative network can be character-
ized in terms of two aspects: (1) structure of the network,
and (2) information routing driven by the tasks. Corre-
spondingly, we develop the following models in this study.

• Network Model: A model that captures the key char-
acteristics of a collaborative network and that can be
used to simulate networks, given specific structural
constraints.

• Routing Model: A model that simulates human behav-
ior in routing task-related information in a collabora-
tive network.

Models used to generate social networks have been studied
extensively with substantial improvement in recent years,
e.g., [5, 9, 26, 29, 32]. In our problem setting, the network
model must work consistently with the routing algorithm so
that the routing length satisfies the distribution observed in
real networks. This two-body modeling requirement is new
and not easy to satisfy.

To develop these two models, we investigate three real-
world collaborative networks collected from different sources.
The first two were extracted from the Eclipse and Netbeans
software development communities. The third one comes
from an IT service management system, in which service
agents collaborate to solve problems reported by customers.
For all three networks, we analyze their structure, as well as
information flows, using the routing history (i.e., bug reports
or problem tickets). We observe that collaborative networks
exhibit not only the scale-free property in the node degree
distribution, but also other organizational constraints. Fur-
thermore, information routing in collaborative networks is
different from routing tasks in conventional complex net-
works, such as IP packet routing in computer networks and
itinerary planning in airline networks. The number of rout-
ing steps for each task follows a heavy-tailed distribution,
indicating that a considerable number of tasks travel along
long routes before reaching the resolvers. The three col-
laborative networks, collected independently from different

sources, exhibit astonishingly similar characteristics, which
validates the need to study them together. These observa-
tions contribute toward understanding the complicated be-
havior of human collaboration in these networks.

Based on our observations from real-world data, we de-
velop a graph model to generate networks similar to real
collaborative networks, and a stochastic routing algorithm
to simulate the human dynamics of collaboration. The mod-
els are independently validated using real-world data and
simulation-based studies. We demonstrate that the pro-
posed models can be used to answer real-world questions,
such as: “How can one alter a collaborative network to achieve
higher efficiency?” To the best of our knowledge, our work is
the first attempt to understand human dynamics in collab-
orative networks and to evaluate analytically the efficiency
of real collaborative networks.

2. OBSERVATIONS
First, we illustrate the key characteristics of real-world

collaborative networks and the information routing behavior
in these networks. Our study is based on three datasets
collected from two different domains: software development
(public) and IT service center (private).

The Eclipse and Netbeans networks are extracted from
the MSR 2011 Challenge [4], where each node represents a
program developer. Both datasets contain a history of bug
reports, user online interactions, and final resolutions. The
Eclipse network has approximately 7, 800 developers who
worked together on 272, 000 bugs. The Netbeans network
contains around 156, 000 bug reports that involved 7, 400 de-
velopers. The third network, labeled “Enterprise network,”
is obtained from an IT service department, where each node
represents a service agent. It contains around 2, 000, 000
problem tickets submitted by customers. Similar to bug
resolution in a programmer network, a ticket is transferred
in a service agent network for resolution. The service net-
work has around 19, 000 service agents. If one member in a
collaboration network routes a bug report or a service ticket
to another member in the network, we construct a directed
edge. Thus, the three collaborative networks are represented
by directed graphs.

Although developer networks and service agent networks
seem to be quite different, we were amazed by the similarity
exhibited in their network structures and dynamic routing
structures, indicating that commonality exists in human col-
laboration behaviors.

2.1 Degree
Figure 2 shows the incoming and outgoing degree distri-

butions of the three collaborative networks. Different from
common observations in other complex networks like the
Internet, the Web, and social networks, which exhibit the
scale-free property, these collaborative networks have trun-
cated power-law node degree distribution.

We tested the power-law hypothesis on the degree dis-
tributions of the collaborative networks using a principled
statistical framework proposed by Clauset et al. [7]. The
power-law model was not accurate enough to characterize
the node degree distribution in collaborative networks after
applying the p test [7]. However, we observed that the node
degree of these networks follow a truncated power-law distri-
bution (Eq. (1)) when the node degree k lies within a finite
range. We applied a maximum likelihood approach, similar
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Figure 2: Degree distributions of collaborative networks.
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Figure 3: Routing steps distributions of problem solving in collaborative networks.

to [7], to fit the truncated power-law distribution. Inspired
by [7], we further evaluated the goodness of fit using the p
test based on the Kolmogorov-Smirnov statistic [20]. The
truncated power-law model is a plausible fit to the node de-
grees because the statistical tests generate a value of p that
is large enough (p > 0.1).

P (k) ∝ k−α where k ∈ (kmin, kmax) (1)

The distributions in Figure 2 further differ from other
complex networks in two aspects: (1) The power-law scaling
parameter of the distribution falls in the range α ∈ (1, 2),
in contrast to the commonly reported range α ∈ (2, 4), and
(2) Both the incoming degree and the outgoing degree follow
roughly the same power-law distribution.

The smaller value of the power-law scaling parameter indi-
cates that, in a collaborative network, the probability P (k)
decreases more slowly as k increases. This distinctive prop-
erty leads to the consequent effect that the node degrees are
bounded. The distribution P (k) ∝ k−α, where α ∈ (1, 2),
does not have a converged mean E(k) =

P∞
k=1 kP (k). How-

ever, in reality, the degrees of the nodes do have a mean
value. This mismatch implies that the degree distribution is
bounded: P (k) ∝ k−α, where k ∈ [kmin, kmax]. The reason
for this distinctive property is that human interactions in a
collaborative network have more realistic constraints than
those in an ordinary social network or the Web or other
complex networks. In a collaborative problem solving envi-
ronment, it takes a significant amount of time for a person
to establish close interactions with other persons.

2.2 Routing Steps
The number of routing steps to complete a task is a criti-

cal measure of efficiency in collaborative networks. Figure 3
depicts the routing steps distribution for the three collabo-
rative networks that we studied. The routing steps follow a
truncated power-law distribution with a very similar scaling
parameter α ∈ (3.5, 4.5) in all three collaborative networks.
Unlike [29], which discovered that short paths exist between
any pair of members in a collaborative network and that
individual members are very adept at finding those short

paths, the heavy-tailed distribution for routing steps indi-
cates that a considerable proportion of tasks travel along
long sequences before reaching a resolver. We conjecture
that the heavy tails in these distributions are largely due to
the varying complexities of the tasks assigned to the net-
work. Namely, when a task is fairly complex and the exper-
tise required to complete the task is concealed in the task
description, the members in a collaborative network have
to try different directions before the task is routed to the
correct destination.

2.3 Clustering Coefficient
The clustering coefficient measures how closely the neigh-

bors of a node are connected, by calculating the number of
connected triplets in a network that are closed triplets. In
an undirected graph, the local clustering coefficient of node
i is defined as follows:

ci = 2ti/(ki(ki − 1)), (2)

where ki is the degree of node i, and ti is the number of
edges between i’s neighbors. The global clustering coeffi-
cient is the average of the local clustering coefficients over
all nodes in the network. To calculate the clustering coef-
ficients in collaborative networks, we ignore the directions
of edges. The clustering coefficients of the three networks
studied are shown in Table 2. Note that the members in the
enterprise network interact more closely in local teams than
those in the public developer networks. This observation is
not surprising, because enterprise networks typically have
more rigid hierarchical structures.

Table 2: Clustering coefficients.
Eclipse network Netbeans network Enterprise network

0.19 0.21 0.35

3. NETWORK MODEL
As it is expensive, if not impossible, to alter real-world

collaborative networks for hypothesis testing, e.g., chang-
ing their structures for better performance, it is important
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to develop a network model for which various hypotheses
can be examined with low cost. The network model must
take into account the structural constraints discussed in Sec-
tion 2, i.e., degree distribution and clustering coefficient.
The network model must work consistently with the rout-
ing algorithm so that the routing steps satisfy the power-law
distribution. This coupled modeling requirement is new and
not easy to satisfy, especially when there is no way to gen-
erate simulated bugs or problem tickets. In this section,
we present a network model for collaborative networks. In
Section 4, we discuss the corresponding routing model.

In the network model, first we determine the location of
each node in the network, which corresponds to a member’s
expertise. Next, we add edges between pairs of nodes, rep-
resenting the interactions among members. Then, we tune
the network model to capture the interactions among nodes
with similar expertise, using the clustering coefficient.

3.1 Node Generation
To model a collaborative network with N nodes, first we

randomly assign coordinates (xi, yi), where xi, yi ∈ [0, L], to
each node i ∈ {1, 2, ..., N} in a two-dimensional rectangular
area, simulating the expertise space.

The coordinates of a node represent the specific exper-
tise of a network member. Thus, two members with similar
expertise tend to be close to each other. Different collabora-
tive networks can have different expertise distributions. To
make the model general, we take a simplified representation
of the expertise space and the node distribution. We assume
that the nodes are uniformly distributed in the rectangular
expertise space. That is, different expertise areas have the
same representation in the generated nodes. However, this
simplified representation in the general model can be sub-
stituted with specific network configurations of real collab-
orative networks. The routing algorithm that we introduce
in Section 4 applies to these specific network configurations,
as demonstrated by a direct embedding of real-world collab-
orative networks in two-dimensional space in Section 5.2.

Because the expertise space is limited to a rectangular
area, nodes located at the center of the area are likely to
have more neighbors than those located close to the bound-
ary. To model the relationship between different expertise
areas, we apply a periodic boundary condition that repli-
cates the expertise area around the areas of interest, as
shown in Figure 4. The distance di,j between any pair of
nodes i and j is defined as the minimum Euclidean distance
between copies of i and j. In this way, each node is given a
roughly equal-sized neighborhood.

3.2 Edge Generation
In a collaborative network, an edge from member i to

member j exists when member i can transfer a task to mem-
ber j. The establishment of an edge requires member j to
expose his/her expertise sufficiently to the others, and mem-
ber i to be aware of member j’s exposed expertise. Only with
these conditions will member i transfer a task to member j,
when i believes j has the appropriate expertise to complete
the task. Based on this intuition, we define two metrics for
each node that guide edge generation in our network model:
an expertise awareness coefficient and an expertise exposure
coefficient.

For each node i in the network, its expertise awareness
coefficient ai and its expertise exposure coefficient ei are

Figure 4: Periodic boundary condition in an exper-
tise space.

random variables that follow probability distributions ai ∼
P (a) and ei ∼ P (e), respectively. An edge from node i to
node j exists if and only if their awareness and exposure
coefficients are large enough to cover the distance between i
and j, i.e., ai × ej > di,j .

To simulate a network with certain incoming and outgoing
node degree distributions, we need to tune the probabilities
P (a) and P (e). Given that the incoming and outgoing de-
gree distributions are identical in all collaborative networks
studied in Section 2, we assume that the awareness and ex-
posure coefficients have the same distribution. Therefore, if
we know the form of one distribution, we can solve for the
other symmetrically.

First, we assume that the distribution of the exposure
coefficient is P (e) = β × e−γ , where e ∈ [emin, emax]. For
any node i, when the awareness coefficient is chosen to be
ai, we calculate the probability that edgei,j exists, given the
distance between node i and node j, as follows:

P (edgei,j) =

8><>:
1 di,j ≤ ai × emin

P (ej > di,j/ai) emin < di,j/ai ≤ emax

0 otherwise

(3)
Note that, when the nodes are uniformly distributed over the
rectangular area, the node density ρ is a constant. There-
fore, given the awareness coefficient ai, we can estimate the

outgoing degree dki
out of node i as

dki
out =

Z inf

d0=0

ρ × 2πd0P (edgei,j)d(d0)

= ρ × π(aiemin)2 (4)

+

Z emax

e0=emin

ρ × 2πa2
i e0P (ej > e0)d(e0)

Thus, dki
out can be expressed as ba2

i , where b is a constant.
To guarantee that the outgoing degrees of the nodes follow
the desired power-law distribution P (kout) = c × (kout)

−α,
where kout ∈ [kmin, kmax], the awareness coefficient must
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have the following probability distribution:

P (a) = lim
Δa→0

P (a ≤ ai ≤ a + Δa)

Δa

= lim
Δa→0

P (ba2 ≤ kout ≤ b(a + Δa)2)

Δa

= lim
Δa→0

cb−α+1((a + Δa)−2α+2 − a−2α+2)

(−α + 1)Δa

= 2cb−α+1a−2α+1 (5)

That is, the awareness coefficient also follows a power-
law distribution with coefficient −2α + 1. According to the
symmetric assumption between the exposure and awareness
coefficients, we conclude that the exposure coefficient follows
the same power-law distribution with coefficient −2α + 1.

The range of the two coefficients should be set such that
the degrees are restricted to the desired range. In Eq. (5), a
node with minimum awareness coefficient amin is expected
to have the minimum outgoing degree kmin; a node with the
maximum awareness coefficient amax is expected to have the
maximum outgoing degree kmax. Thus,

amin = emin =

s
kmin

ρ × π〈e2〉

amax = emax =

s
kmax

ρ × 2π〈e2〉 (6)

where 〈e2〉 is the expected value of the squared exposure
coefficient.

Given the power-law coefficient and the range of the aware-
ness and exposure coefficients, their distributions are prop-
erly normalized. Using the normalized distributions, we gen-
erate edges in the network model with the probability given
in Eq. (3), so that the incoming and outgoing degrees of the
nodes follow the desired power-law distribution.

3.3 Modeling Expertise Domains
In a real collaborative network, the clustering coefficient

indicates how closely its members work together in expertise
domains. A higher clustering coefficient means that there
are more collaborations between members within local ex-
pertise domains. To model collaborative networks with dif-
ferent expertise domains, the network model needs to form
local teams of people that have specific expertise for cer-
tain tasks and that represent expertise domains. Intuitively,
members with expertise in similar domains tend to interact
more with each other when working on these tasks. Conse-
quently, the network should have more links between nodes
inside the same expertise domain, and fewer links between
nodes in different or unrelated expertise domains. Even
though it is less likely for members from unrelated exper-
tise domains to interact with each other, such connections
still exist in real collaborative networks and a member who
reaches beyond his/her own expertise domain is usually one
with high connectivity.

To model this behavior, first we associate nodes in the
network with different domains. Then, for any two different
domains, as illustrated in Figure 5, we break inter-domain
links and replace them with intra-domain links, using an
edge swapping process inspired by [28]. At each step of the
edge swapping process, we choose a pair of inter-domain
edges, pointing in opposite directions, and assign a swapping

domain 2

domain 1 domain 2

domain 1

u1

u2v1
v2

u1

v1 u2
v2

Figure 5: Inter-domains edge swapping.

probability according to the degrees of the nodes to which
they connect. If the connected nodes have high incoming or
outgoing degrees, we swap the edges with low probabilities;
otherwise, we swap the edges with high probabilities. Specif-
ically, we consider two inter-domain edges u1 → v2 and
u2 → v1, with users u1 and v1 from one domain, and users u2

and v2 from the other domain. We assign the edge swapping
probability p = 1 − max(ku1

out, k
v2
in , ku2

out, k
v1
in )/kmax, where

kmax is the maximum outgoing/incoming degree among all
the nodes in the network. With probability p, we break the
edges u1 → v2 and u2 → v1, and connect the edges u1 → v1

and u2 → v2. We repeat the edge swapping process un-
til a certain fraction of the inter-domain edges have been
swapped to intra-domain edges. The edge swapping process
prefers to break inter-domain connections from nodes with
low degrees and to maintain the edges for well-connected
nodes. Thus, we avoid isolated subgraphs during the edge
swapping process, and the resulting network matches real
collaborative networks.

With these adjustments, the node degree distribution will
still fit the desired power-law distribution achieved in Sec-
tion 3.2. The more edge swapping one performs, the higher
the local connectivity the network has within each domain.
The resulting networks have higher clustering coefficients.

For a network with a fixed number of nodes, as we increase
the number of domains, the average size of a domain de-
creases. Consequently, the edge density inside each domain
increases and the clustering coefficient increases. After form-
ing local domains, the generated network has the desired in-
coming/outgoing degree distribution, and approximates the
clustering coefficients of real collaborative networks.

4. ROUTING MODEL
The task-driven routing model must capture the behavior

of humans in routing tasks to appropriate experts. Although
the small-world phenomena [14, 29] is observed in collabo-
rative networks, i.e., a relatively short path typically exists
between any pair of nodes in the three studied networks,
there is no guarantee that the members in a collaborative
network are able to route tasks through these short paths.
In fact, our analysis in Section 2 has shown that the num-
ber of routing steps for a task typically follows a truncated
power-law or heavy-tailed distribution. Consequently, a con-
siderable number of tasks are routed along a long sequence
of steps before they reach the resolvers. A commonly used
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Figure 6: Degree distributions of simulated networks.

model in the Internet [6] and in social networks [14] is greedy
routing. The greedy routing algorithm assumes that there
exists a distance between any pair of nodes. In each rout-
ing thread, a node has access to the distance from itself and
its neighbors to the destination node. If there exists one or
more neighbors closer to the destination than the current
node, it routes the task (packet) to the neighbor node clos-
est to the destination. Otherwise, the node does not have
a better routing choice than itself. In this case, the task
(packet) fails to reach the destination.

Unfortunately, the greedy model is not adequate for simu-
lating human task routing behavior. First of all, the greedy
algorithm is deterministic, and often fails to navigate a task
if the current task holder does not have a better choice. In
the three networks we investigated, the greedy algorithm
fails to route ∼ 14% of the tasks. In contrast, most of these
tasks have been successfully routed by humans. Secondly,
the routing steps generated by the greedy algorithm follow
an exponential distribution. As the number of routing steps
increases, the probability drops much more quickly than the
power-law distribution. In real decision-making scenarios, a
human tends to make different routing decisions when the
situations (e.g., availability of neighbors, priority of tasks,
etc.) are changing, even given similar tasks. Therefore, a
more delicate model is needed to incorporate the stochas-
tic process of task routing, which is essential for modeling
human behavior.

In a collaborative network, people make their task routing
decisions based on many factors, including the availability
of neighbors, priority of tasks, etc. A member often makes
a decision based on the local information available, rather
than the global information that can be used to optimize the
end-to-end routing efficiency. Thus, the same task can be
transferred by a member along various non-optimal paths
in different situations. Therefore, information routing in
collaborative networks is a stochastic process, rather than a
deterministic process.

We construct a Stochastic Greedy Routing (SGR) model
based on the following intuition. When a member in a col-
laborative network cannot finish a task, he/she tends to
transfer the task to a neighbor who has expertise closer to
that of the resolver, similar to a greedy approach. The mem-
ber also evaluates the connectivity of his/her neighbors, and
tends to select a neighbor who has more outgoing connec-
tions, assuming that a better-connected neighbor is more
likely to route the task along a shorter path to the resolver.

The SGR model assumes that each node relies on only lo-
cal information to route tasks to one of its neighbors, follow-
ing a stochastic process. Considering a task that is initially
assigned to node u and has a resolver v, the SGR model
guides each node to navigate the task through the network,

from the initiator u to the resolver v. At each step, when
a non-resolver node holds a task, it evaluates the candidate
set C, consisting of all its neighbors who have not yet been
visited, and transfers the task to one of them. In some rare
cases, the candidate set becomes empty and all the neigh-
bors are marked as unvisited. As mentioned above, the task
should be transferred to a node with closer expertise to that
of the resolver and with a higher outgoing degree. Therefore,
for each candidate i, we define the following utility function:

F (i) = d(i, v)−1 × ki
out (7)

Note that this utility function is inversely proportional to
d(i, v), the geometric distance between a candidate and the
resolver in our network model, which represents the simi-
larity in their expertise. The holder of a task transfers the
task to one of the candidates i ∈ C with a probability pro-
portional to i’s utility, i.e., P (i) = F (i)/

P
j∈C F (j). This

process is repeated until the task reaches the resolver. The
SGR model does not rely on the nature of the tasks to per-
form routing; thus, it avoids the issue of generating synthetic
tasks. Instead, it needs only a pair of initiators and resolvers
to simulate a task, which significantly simplifies the model.

The SGR model assumes that each node can evaluate the
geometric distance between its neighbors and the resolver,
without knowing the topology of the entire network. This
assumption is very close to real-life situations. In our net-
work model, geometric distances between nodes represent
similarity in the expertise of the node. Although the cur-
rent holder of a task does not know the shortest path to the
resolver, he/she has knowledge of what expertise is required
to complete the task, as well as the expertise of the neigh-
bors. Hence, he/she can make a judgement as to which one
of the neighbors is a better fit toward completing the task.

5. EVALUATION
In this section, we evaluate the network model and the

routing model presented earlier. First, we evaluate the net-
work model by comparing the key characteristics of the syn-
thetic networks generated from this model and those of real
collaborative networks. Then, we evaluate the effectiveness
of the routing model by applying it to synthetic networks, as
well as a direct two-dimensional representation of real collab-
orative networks. Finally, we demonstrate how to combine
the two models to optimize the structure of collaborative
networks in a case study.

5.1 Evaluating the Network Model
To evaluate the network model, first we use it to generate

synthetic networks that have similar incoming and outgoing
degree distributions as observed in real collaborative net-
works. For example, the Eclipse network has a power-law
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Figure 7: Tuning the clustering coefficient.

degree distribution P (k) ∼ k−1.73, where k ∈ [1, 400]. For
each node in the synthetic network, we randomly select its
awareness coefficient and exposure coefficient following the
same power-law distribution P (a) ∼ a−2.92, P (e) ∼ e−2.92,
where a, e ∈ [0.047, 0.94] as calculated from Eqs.(5)-(6).
Similarly, for simulating the Netbeans network, we calculate
the power-law distribution for the awareness coefficient and
the exposure coefficient as P (a) ∼ a−3.36, P (e) ∼ e−3.36,
where a, e ∈ [0.05, 1.6]. For the Enterprise network, the
awareness coefficient and the exposure coefficient follow the
power-law distribution P (a) ∼ a−2, P (e) ∼ e−2, where
a, e ∈ [0.036, 0.72]. Figure 6 shows that the degree distribu-
tions in synthetic networks are very close to those observed
in the three real collaborative networks (i.e., Eclipse, Net-
beans, and Enterprise), shown in Figure 2.

Besides degree distributions, we need to evaluate the ca-
pability of our network model in generating networks with
various clustering coefficients. Recall that the clustering
coefficient of a collaborative network reflects the existence
of expertise domains and the difference between inter- and
intra-domain links. Here, we study the same three synthetic
networks as shown in Figure 6. In each network, we divide
the nodes into K expertise domains and then vary the clus-
tering coefficient through edge swapping. As we vary the
value of K, we expect different clustering coefficients. We
select the one with the clustering coefficient closest to that
of the real network as an approximation.

Figure 7 shows the variations of clustering coefficients of
the synthetic networks for different values of K. By increas-
ing the value of K, we observe that the clustering coefficient
increases. Hence, by choosing a proper value of K, our net-
work model can approximate a real collaborative network in
both the degree distribution and the clustering coefficient.
In our study, the Eclipse network is best approximated with
9 domains. The Netbeans network is best approximated
with 10 domains. The Enterprise network is best approx-
imated with about 60 expertise domains. We do not have
information regarding the number of expertise domains in
the Eclipse or Netbeans networks. However, we were able
to confirm that the Enterprise network indeed had about 60
expertise domains.

It can also be observed in Figure 7 that, when the net-
work has a power-law degree distribution with a large scal-
ing parameter (e.g., the Netbeans network), the clustering
coefficient curve tends to be more flat than for the other net-
works. The reason is that, in such a network, most nodes
have very few connections. Correspondingly, in our network
model, most nodes have small awareness and exposure coeffi-
cients. Hence, the network is not very well-connected. After
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dividing the nodes into different domains, the edge swap-
ping process can affect only a small number of cross-domain
edges; otherwise, the network will become disconnected. As
a result, increasing the value of K has a smaller effect on
changing the network clustering coefficient.

5.2 Evaluating the Routing Model
To evaluate the routing model, first we ran task routing

simulations guided by SGR on a synthetic network generated
by the network model and we demonstrated that the result
is consistent with real observations.
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Figure 9: Two-dimensional spectral embedding of
the Netbeans network.

We generated a collaborative network with 5, 000 nodes
to simulate the Enterprise network. The incoming/outgoing
degree of the generated network follows a power-law distri-
bution P (k) ∼ k−1.5, where k ∈ [1, 400]. We divided the
network into 60 expertise domains, which leads to a cluster-
ing coefficient of 0.37. We generated a set of 100, 000 tasks
by choosing the initiators and the resolvers. For each task,
we choose an initiator node with probability proportional
to its outgoing degree, and a resolver node with probabil-
ity proportional to its incoming degree. As shown in Fig-
ure 8, the resulting routing steps distribution again follows a
power-law distribution. Its power law factor α = 3.5 is very
close to the real value α = 3.53, which indicates that we can
seamlessly combine the two models without inconsistency.

We further ran task routing directly on a two-dimensional
representation of real networks to illustrate that it can stand
alone for routing simulations. To map a real collaborative
network into a two-dimensional space, while preserving the
local neighborhood relationships, we adopt the spectral em-
bedding method [23]. The embedding process guarantees
that, if two nodes are close to each other in the original
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Figure 10: Simulated routing step distributions.

space, they are likely to be close to each other in the embed-
ded space. The closeness between two nodes can be defined
by the number of task transfers between them: the more
frequent the task transfer, the closer the two nodes.

Figure 9 shows the two-dimensional embedding of the Net-
beans network, using the spectral embedding method. The
embedding can be regarded as a non-uniform distribution of
nodes in an expertise space. Given the embedding, we can
assign two-dimensional coordinates (x1, x2) to each node in
the network, which enables distance measurement between
pairs of nodes, a required input to the SGR model. Because
we know the initiator and the resolver of each task, we then
apply the SGR model to simulate the path of each task rout-
ing. The routing step distributions of the simulation for all
three networks are shown in Figure 10. The simulated re-
sults match the observations well, as Figure 3 shows.

5.3 Combining the Two Models: A Case Study
Our network model simulates the static connectivity of a

collaborative network, whereas our SGR model simulates the
dynamic user behavior in information routing in a collabora-
tive network. Combined together, these two models provide
an unprecedented means of studying existing collaborative
networks. It is important to study how the structure changes
of a collaborative network can affect the efficiency of task ex-
ecution, without changing the real-world network structure.
This case study demonstrates the simulation method for our
network and information routing models.

The case study is the problem management organization
of a large IT service provider. To accommodate the evolving
workload and human resources, the service provider needs
to restructure the service agent network to deliver the opti-
mal performance in resolving the problems reported by its
clients. Currently, these restructuring decisions are made
manually by experienced managers or consultants, without
quantitative analysis as to how the resulting network will
perform after the restructuring.

Our models can be used to provide analytical insights to
the decision makers. First, one can use our network model
to generate new network topologies with different structural
constraints that need to be imposed in practice. Then, given
a set of tasks, the efficiency of different networks can be
evaluated through the task routing simulation guided by
the SGR model. Here, we assume that a collaborative net-
work of 5, 000 service agents needs to be restructured. These
agents are divided into K pools (expertise domains) based
on their expertise. A important question is: “How does one
select the optimal number K of pools, to provide the best
efficiency in task execution?” Intuitively, a smaller value of
K indicates that the agents are more generalized in their
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Figure 11: Evaluating the network structures.

domain expertise, whereas a larger value of K suggests that
the agents are more specialized in their domain expertise.
Furthermore, with more domains, a task is less likely to be
initially assigned to the right agent pool, which might lead to
longer routing paths, because intra-domain routing is more
likely to occur than inter-domain routing.

For our analysis, we generate 10 collaborative networks,
with 10 to 100 domains. In each network configuration, we
simulate the routing of the same set of 100, 000 tasks. The
probability p of correctly assigning the task to the right do-
main is also taken into account in the simulation. For each
task, first we select the resolver node with probability pro-
portional to its incoming degree. Then, with probability
p, the task is initiated within the same domain as the re-
solver; otherwise, the initiator is selected from outside the
resolver’s domain. We vary the “correct assignment proba-
bility” p from 0.7 to 0.99. For each value of p, we route the
entire set of tasks in the 10 networks. The results of all simu-
lations are shown in Figure 11. The y-axis shows the average
number of transfer steps to the resolver for the entire set of
tasks. Each curve shows the routing simulation results for a
particular choice of p. Obviously, a lower average number of
steps indicates a higher routing efficiency, because it usually
takes less time when the tasks are routed to the resolver in
fewer steps. As shown in the figure, when more tasks are
initially assigned to the right domain, increasing the number
of domains leads to better performance. When fewer tasks
are initially assigned to the right domain, a smaller number
of domains is more favorable.

Achieving a certain value of p, given various numbers of
agent pools, has different implications in terms of training
the initial assigner of the task: for the same value of p, the
training cost typically increases as the number of agent pools
increases, because the assigner must have stronger knowl-
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edge in matching the task with the correct expertise do-
main. Configuring the collaborative network into different
numbers of expertise domains also has implications on the
training cost for the agents. Given these implications, the
decision maker can use our method to select the optimal
number of agent pools that suits the enterprise’s budget or
other constraints.

6. RELATED WORK
Previous studies related to our work mainly belong to two

categories: those that focus on network generation models,
and those that analyze information flows in networks.

Network generation models. Generating synthetic
networks that reflect statistics similar to real social net-
works has been of great interest to researchers in various
fields. The Erdös-Rényi random network [9] is a classic ran-
dom network, where any two nodes are connected according
to a fixed probability. A regular lattice network is created
with nodes placed on one or more dimensional lattices, i.e.,
circle or grid, and each node is connected to its n nearest
neighbors. Watts and Strogatz [32] added random rewiring
to the regular lattice network such that the generated net-
work has a small diameter as observed in a sample of the
real social network [29]. Barabasi et al. [5] focused on the
fact that many complex networks have degrees that follow
a heavy-tail distribution and captured this phenomena by
incrementally creating a random network, with new edges
preferentially attached to already well-connected nodes. To
comply with both the small-world effect and the power-law
degree distribution, Makowiec [16] and Ree [21] proposed
rewiring processes in a constant-size network based on the
preferential attachment principle. Serrano et al. [26] devel-
oped a network generation model to reproduce self-similarity
and scale invariance properties observed in real complex net-
works, by utilizing a hidden metric space with distance mea-
surements. Sala et al. [24] studied how well the generated
graphs match real social graphs extracted from Facebook.

Different from the existing graph generation models, our
method contributes toward understanding how links are es-
tablished and how members with different expertise interact
with each other in real collaborative networks. Both the
expertise awareness and expertise exposure of each mem-
ber are taken into consideration in our model. It not only
generates a network topology with statistical characteristics
similar to real-world collaborative networks, but also can
be seamlessly combined with our routing model to simulate
human dynamics in these networks.

Information flow analysis. The spreading of informa-
tion has been extensively studied under different network
settings, e.g., social networks, especially the World Wide
Web, the e-mail network, biological networks, etc. Exam-
ples include the spread of innovations [12, 22, 27, 30], opin-
ions, rumors and gossip [10, 11, 17], computer/biological
viruses [15, 25] and marketing [8, 13]. More recently, Wang
et al. [31] have studied how information propagates from
person to person using e-mail forwarding, and Wu et al.
[33] analyzed the information spreading pattern on Twitter.
This type of information flow aims to reach and influence
more people and, hence, to achieve a large impact. Most
of the work has focused on analyzing patterns of the infor-
mation spreading process. Kempe et al. [13] have addressed
the question of how to choose a subset of nodes to initiate
information spreading to maximize influence in a network.

In our work, we focus on another type of information flow:
task-driven information flow, where the goal is to reach a
user who can accomplish a task with a minimal number of
transfer steps. Related to our problem, Milgram [19] demon-
strated that short paths exist between any pair of nodes in a
social network (a.k.a., the small world phenomena). Klein-
berg [14] investigated why decentralized navigation is effi-
cient using a synthetic network lattice. Boguna et al. [6]
studied the navigability of complex networks by running a
greedy routing algorithm on synthetic networks generated by
a model described in [26]. In the collaborative networks we
studied, we observe that these networks exhibit degree dis-
tributions quite different from commonly-studied complex
networks. Furthermore, the simple greedy algorithm does
not provide a good approximation of information flow dy-
namics in collaborative networks. Thus, we developed the
SGR model to evaluate the efficiency of task-driven infor-
mation flow in such networks.

7. CONCLUSIONS
This study examined a special type of social networks –

collaborative networks. Detailed observations of three real-
world collaborative networks were presented along with the
static network topology and dynamic information routing
for each network. The collaborative networks exhibit not
only the truncated power-law node degree distributions but
also organizational constraints. Information routing in col-
laborative networks is different from routing in conventional
complex networks, such as computer networks and airline
networks, because of the random factors in human decision
making. The routing steps in collaborative networks also fol-
low a truncated power-law distribution, which implies that
a considerable number of tasks travel along long sequences
of steps before they are completed. Our results and obser-
vations for several independent sources are consistent with
each other, and can be generalized to other real-world col-
laborative networks. They help in understanding the com-
plicated behavior in human collaboration.

Based on real-world data, we developed a graph model
to generate networks similar to real collaborative networks,
and a stochastic routing algorithm to simulate the human
dynamics of collaboration. The models are independently
validated using real-world data. We demonstrated that the
two models can be used to answer real-world questions, such
as: “How can one design a collaborative network to achieve
higher efficiency?” To the best of our knowledge, our work is
the first attempt to understand human dynamics in collab-
orative networks and to estimate analytically the efficiency
of real collaborative networks.
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