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Abstract—Distance metric learning (DML) is an important technique to improve similarity search in content-based image retrieval.
Despite being studied extensively, most existing DML approaches typically adopt a single-modal learning framework that learns the
distance metric on either a single feature type or a combined feature space where multiple types of features are simply concatenated.
Such single-modal DML methods suffer from some critical limitations: (i) some type of features may significantly dominate the others
in the DML task due to diverse feature representations; and (ii) learning a distance metric on the combined high-dimensional feature
space can be extremely time-consuming using the naive feature concatenation approach. To address these limitations, in this paper, we
investigate a novel scheme of online multi-modal distance metric learning (OMDML), which explores a unified two-level online learning
scheme: (i) it learns to optimize a distance metric on each individual feature space; and (ii) then it learns to find the optimal combination
of diverse types of features. To further reduce the expensive cost of DML on high-dimensional feature space, we propose a low-rank
OMDML algorithm which not only significantly reduces the computational cost but also retains highly competing or even better learning
accuracy. We conduct extensive experiments to evaluate the performance of the proposed algorithms for multi-modal image retrieval,
in which encouraging results validate the effectiveness of the proposed technique.

Index Terms—content-based image retrieval, multi-modal retrieval, distance metric learning, online learning
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1 INTRODUCTION of all features; and (ii) the naive concatenation approaely m
sult in a combined high-dimensional feature space, ngakin

One of the core research problems in multimedia retrie\/?j . ) .
P e subsequent DML task computationally intensive.

is to seek an effective distance metric/function for compu
ing similarity of two objects in content-based multimedia To overcome the above limitations, this paper investigates
retrieval tasks [1], [2], [3]. Over the past decades, muiiia @ novel framework of Online Multi-modal Distance Metric
researchers have spent much effort in designing a varié§arning (OMDML), which learns distance metrics from
of low-level feature representations and different diseanmulti-modal data or multiple types of features via an efficie
measures [4], [5], [6]. Finding a good distance metric/tiolc  and scalable online learning scheme. Unlike the above con-
remains an open challenge for content-based multimedia ¢@tenation approach, the key ideas of OMDML are twofold:
trieval tasks till now. In recent years, one promising diet (i) it learns to optimize a separate distance metric for each
to address this challenge is to explore distance metriciegr individual modality (i.e., each type of feature space), &)
(DML) [7], [8], [9] by applying machine learning techniquesit learns to find an optimal combination of diverse distance
to optimize distance metrics from training data or side infometrics on multiple modalities. Moreover, OMDML takes ad-
mation, such as historical logs of user relevance feedbackvgntages of online learning techniques for high efficieny a
content-based image retrieval (CBIR) systems [6], [7]. scalability towards large-scale learning tasks. To furthduce

Although various DML algorithms have been proposelie computational cost, we also propose a Low-rank Online
in literature [7], [10], [11], [12], [13], most existing DML Multi-modal DML (LOMDML) algorithm, which avoids the
methods in general belong to single-modal DML in that thejeed of doing intensive positive semi-definite (PSD) projec
learn a distance metric either on a single type of feature ¥pns and thus saves a significant amount of computatiorsal co
on a combined feature space by simply concatenating mailtip’ DML on high-dimensional data. As a summary, the major
types of diverse features together. In a real-world apfitina contributions of this paper include:

such approaches may suﬁerfrqm some practlcfal limitatiGhs « We present a novel framework of Online Multi-modal

some types of features may significantly dominate the others™ _. . . . .

. . . . . Distance Metric Learning (OMDML), which simultane-

in the DML task, weakening the ability to exploit the potaiti . : A .
ously learns optimal metrics on each individual modality

and the optimal combination of the metrics from multiple
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tasks using multiple types of features. the retrieval process that often requires an effectiveimde
The remainder of this paper is organized as follows. Secti@heme, which are out of this paper’s scope.
2 reviews related work. Section 3 first gives the problem
formulation, and then presents our method of online muli%2 Distance Metric Learning
modal metric learning, followed by proposing an improvegsiance metric learning has been extensively studied th bo
low-rank algorithm. Section 4 provides theoretical analysr  machine learning and multimedia retrieval communitieg,[30
the proposed algorithms, Section 5 discusses our expeaineny| 131], [32], [33], [34], [35], [36]. The essential ides ito

results, and finally Section 6 concludes this work. learn an optimal metric which minimizes the distance betwee
similar/related images and simultaneously maximizes the d
2 RELATED WORK tance between dissimilar/unrelated images. Existing DML

Our work is related to three major groups of research: cantefitudies can be grouped into different categories according
based image retrieval, distance metric learning, and enlitP dlﬁereqt learning settings and_ prmmples. For exampje
learning. In the following, we briefly review the closelyagd terms of different types of constraint settings, DML teciugs

representative works in each group. are typically categorized into two groups:
« Global supervised approaches [30], [7]: to learn a metric
2.1 Content-based Image Retrieval on a global setting, e.g., all constraints will be satisfied

simultaneously;

With the rapid growth of digital cameras and photo sharing . Local supervised approaches [32], [33]: to learn a metric

websites, image retrieval has become one of the most impor-" . ; .
tant research topics in the past decades, among which ¢enten n _the Iogal SEnse, €.9., the given _Iogal constraints from
based image retrieval is one of key challenging problems [1] "€!ghboring information will be satisfied.
[2], [3]. The objective of CBIR is to search images by Mpreqver, accc_)rdmg to _dlﬁerent training data fo_rms,_DML
analyzing the actual contents of the image as opposedSfydies in machine learning typically learn metrics digect
analyzing metadata like keywords, title and author, suet t'om explicit class labels [32], while DML studies in multen
extensive efforts have been done for investigating vario mainly learn metrics from side information, which usyal
low-level feature descriptors for image representatios].[1 can be obtained in the following two forms:
For example, researchers have spent many years in studying Pairwise constraints [7], [9]: A must-link constraint set
various global features for image representation, suclolas c S and a cannot-link constraint s@ are given, where
features [14], edge features [14], and texture feature} [15 @ pair of images(p;,p;) € S if p; is related/similar
Recent years also witness the surge of research on locatéeat 10 p;, otherwise (p;,p;) € D. Some literature uses
based representation, such as the bag-of-words models [16] the term equivalent/positive constraint in place of “must-
[17] using local feature descriptors (e.g., SIFT [18]). link”, and the term inequivalent/negative constraint in
Conventional CBIR approaches usually choose rigid dis- place of “cannot-link”.
tance functions on some extracted low-level features fore Triple constraints [20]: A triplet seP is given, where

multimedia similarity search, such as the classical Eedlid P = {(pupf,p{).l(pt,pf) € S;(pp;) € Dt =
distance or cosine similarity. However, there exists ong ke~ 1,...,7}, S contains related pairs arid contains un-
limitation that the fixed rigid similarity/distance funoti may related pairs, i.e.p is related/similar top™ and p is

not be always optimal because of the complexity of visual im-  unrelated/dissimilar tgp~. 7" denotes the cardinality of
age representation and the main challenge of the semantic ga entire triplet set.

between the low-level visual features extracted by compute When only explicit class labels are provided, one can also
and high-level human perception and interpretation. Henamnstruct side information by simply considering relatibips
recent years have witnesses a surge of active researclseffof instances in same class as related, and relationships of
in design of various distance/similarity measures on sawe | instances belonging to different classes as unrelateduin o
level features by exploiting machine learning technique,[ works, we focus on triple constraints.

[20], [21], among which some works focus on learning to hash Finally, in terms of learning methodology, most existing
for compact codes [22], [19], [23], [24], [25], and some athe DML studies generally employ batch learning methods which
can be categorized into distance metric learning that véll often assume the whole collection of training data must be
introduced in the next subsection. Our work is also related given before the learning task and train a model from scratch
multimodal/multiview studies, which have been widely saal except for a few recent DML studies which begin to explore
on image classification and object recognition fields [26@nline learning techniques [37], [38]. All these works gene
[27], [28], [29]. However, it is usually hard to exploit thees ally address single-modal DML, which is different from our
techniques directly on CBIR because (i) in general, imagecus on multi-modal DML. We also note that our work is very
classes will not be given explicitly on CBIR tasks, (ii) evién different from the existing multiview DML study [26] whicls i
classes are given, the number will be very large, (iii) imagsncerned with regular classification tasks by learning &iime
datasets tend to be much larger on CBIR than on classificatiom training data with explicit class labels, making it difficto
tasks. We thus exclude the direct comparisons to suchmgistbe compared with our method directly. We note that our work
works in this paper. There are still some other open issussdifferent from another multimodal learning study in [39]
in CBIR studies, such as the efficiency and scalability afhich addresses a very different problem of search-based fa
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Fig. 1. Overview of the proposed multi-modal distance metric learning scheme for multi-modal retrieval in CBIR

annotation where their multimodal learning is formulatethw model is updated with the loss whenever it is nonzero. The
a batch learning task for optimizing a specific loss functiooverall objective of an online learning task is to minimibe t
tailored for search-based face annotation tasks from weaklumulative loss over the entire sequence of received instan
labeled data. Finally, we note that our work is also differ- In literature, a variety of algorithms have been proposed fo
ent from some existing distance learning studies that leasnline learning [43], [44], [45], [46], [47]. Some well-kiam
nonlinear distance functions using kernel or deep learniegamples include the Hedge algorithm for online prediction
methods [21], [40], [35]. In comparison to the linear distan with expert advice [48], the Perceptron algorithm [43], the
metric learning methods, kernel methods usually may aehigfamily of passive-Aggressive (PA) learning algorithms ][44
better learning accuracy in some scenarios, but falls shartd the online gradient descent algorithms [49]. Theress al
in being difficult to scale up for large-scale applicationsed some study that attempts to improve the scalability of @nlin
to the curse of kernelization, i.e., the learning cost iases kernel methods, such as [50] which proposed a bounded online
dramatically when the number of training instances in@sasgradient descent for addressing online kernel-basedifitass
Thus, our empirical study is focused on direct comparisonstion tasks. In this work, we apply online learning technigjue
the family of linear methods. i.e., the Hedge, PA, and online gradient descent algorithms
to tackle the multi-modal distance metric learning task for
content-based image retrieval. Besides, we note that thik w
was partially inspired by the recent study of online muéipl
Our work generally falls in the category of online learningcernel learning which aims to address online classification
methodology, which has been extensively studied in machitasks using multiple kernels [51]. In the following, we giae
learning [41], [42]. Unlike batch learning methods thatal§u brief overview of several popular online learning algarmith
suffer from expensive re-training cost when new trainintada

arrive, online learning sequentially makes a highly efficie 2.3.1 Hedge Algorithms

(typically constant) update for each new training data, imgk The Hedge algorithm [48], [52] is a learning algorithm which
it highly scalable for large-scale applications. In geheraaims to dynamically combine multiple strategies in an optim
online learning operates on a sequence of data instances wiay, i.e., making the final cumulative loss asymptomatycall
time stamps. At each time step, an online learning algorithapproach that of the best strategy. Its key idea is to main-
processes an incoming example by first predicting its clagsn a dynamic weigh-distribution over the set of stratsgie
label; after the prediction, it receives the true classllaléch During the online learning process, the distribution is ated

is then used to measure the suffered loss between the médietccording to the performance of those strategies. Spdbifica
label and the true label; at the end of each time step, ttiee weight of every strategy is decreased exponentialliz wit

2.3 Online Learning



respect to its suffered loss, making the overall strategy ap to learn the distance metrics in the learning phase inrdode

proaching the best strategy. facilitate the image ranking task in the retrieval phase o
_ _ _ that these two phases may operate concurrently in practice,
2.3.2 Passive-Aggressive Learning where the learning phase may never stop by learning from

As a classical well-known online learning technique, thendless stream training data.

Perceptron algorithm [43] simply updates the model by agidin During the learning phase, we assume triplet training data
an incoming instance with a constant weight whenever iitstances arrive sequentially, which is natural for a reaifid

is misclassified. Recent years have witnessed a variety @BIR system. For example, in online relevance feedback, a
algorithms proposed to improve Perceptron [53], [44], whicuser is often asked to provide feedback to indicate if agedd
usually follow the principle of maximum margin learning inimage is related or unrelated to a query; as a result, users’
order to maximize the margin of the classifier. Among theniglevance feedback log data can be collected to generate the
one of the most notable approaches is the family of Passiteaining data in a sequential manner for the learning taSk [5
Aggressive (PA) learning algorithms [44], which updates thOnce a triplet of images is received, we extract different-lo
model whenever the classifier fails to produce a large mard@vel feature descriptors on multiple modalities from thes
on the incoming instance. In particular, the family of oerlinimages. After that, every distance function on a single rigda
PA learning is formulated to trade off the minimization ofan be updated by exploiting the corresponding features and
the distance between the target classifier and the previdalel information. Simultaneously, we also learn the optim
classifier, and the minimization of the loss suffered by theombination of different modalities to obtain the final opal
target classier on the current instance. The PA algoritmjmge distance function, which is applied to rank images in the
good efficiency and scalability due to their simple closedf retrieval phase.

solutions. Finally, both theoretical analysis and most ieicgd During the retrieval phase, when the CBIR system receives
studies demonstrate the advantages of the PA algorithnrs ogequery from users, it first applies the similar approach to

the classical Perceptron algorithm. extract low-level feature descriptors on multiple modiedit
then employs the learned optimal distance function to rank
2.3.3 Online Gradient Descent the images in the database, and finally presents the user with

Besides Perceptron and PA methods, another well-known dhe list of corresponding top-ranked images. In the foltgyyi

line learning method is the family of Online Gradient Dedcenve first give the notation used throughout the rest of thisspap
(OGD) algorithms, which applies the family of online convexnd then formulate the problem of multi-modal distance imetr
optimization techniques to optimize some particular ofijec learning followed by presenting online algorithms to soive
function of an online learning task [49]. It enjoys solid dhet-

ical foundation of online convex optimization, and thus k®r 3 2 Notation

egec'gvely in empirical .appllcatlons. When the trammg:d 'S For the notation used in this paper, we use bold upper case
abun anF "’?”d computmg resources are comparaﬂyey scagg/er to denote a matrix, for exampI®I € R™*", and bold
some existing studies showed that a properly designed O 1

algorithm can asymptotically approach or even outperform er case letter to denote a vector, for example R, We
9 . ymplc Y app v utp a%optI to denote an identity matrix. Formally, we define the
respective batch learning algorithm [54].

following terms and operates:

« m: the number of modalities (types of features).
3 ONLINE MULTI-MODAL DISTANCE METRIC « n;. the dimensionality of the-th visual feature space

LEARNING (modality).

3.1 Overview « p9: the i-th type of visual feature (modality) of the
In literature, many techniques have been proposed to ineprov ~ corresponding imag_p(” eR™. _

the performance of CBIR. Some existing studies have mades M'”: the optimal distance metric on theth modality,
efforts on investigating novel low-level feature desaistin whereM() € R" 7. _ _ .
order to better represent visual content of images, whierst ~ © W: a linear transformatlonTmatnx by decomposing
have focused on the investigation of designing or learning M, such thatM® = WO W), W, e R,

effective distance/similarity measures based on someetel wherer; is the dimensionality of projected feature space.
low-level features. In practice, it is hard to find a single « S: a positive constraint set, where a p@ir;, p;) € S if
best low-level feature representation that consistendptd and only if p; is related/similar top.

the others at all scenarios. Thus, it is highly desirable to e D: @ negative constraint set, where a paif, p;) € S if
explore machine learning techniques to automatically domb and only if p; is unrelated/dissimilar tg.

multiple types of diverse features and their respectiviadie ~ » P: @ triplet set, where? = {(p;,p;",p; )|(P+, ;) €
measures. We refer to this open research problem as a multi- S; (pt.py ) € D,t = 1,..., T}, whereT denotes the
modal distance metric learning task, and present two nes+alg ~ cardinality of entire triplet set.

rithms to solve it in this section. Figure 1 illustrates tiystsm ~ * di(p2, p2): the distance function of two imaggs and
flow of the proposed multi-modal distance metric learning P2 on thei-th type of visual feature (modality).
scheme for content-based image retrieval, which consistsWhen only one modality is considered, we will omit the
two phases, i.e., learning phase and retrieval phase. Taéle guperscript(i) or subscript in the above terms.



3.3 Problem Formulation where|||| » denotes the Frobenius nordy,= {0 >, 0() =

Our goal is to learn a distance function from side informatiol: ¢ € [0,1],¥i} and /() is a loss function such as
for content-based image retrieval. We restrict our disoumss o((
for learning the family of Mahalanobis distances. In pate,

for any two images:, p» € R”, wheren is the dimension- The constraints in Eqn.(2) are implicitly imposed in the abo
ality of represented feature space, we aim to learn an optinénge loss function, and’ is a regularization parameter to
distance metridMI to calculate the distance betwepn and prevent overfitting.

p2 as the following distance function:

d(p1, p2) — (pl _ pg)TM(p1 _ p2); M = 0, (1) 3.4 OMDML Algorlthm

One way is to directly solve the optimization task in Eqn.(3)

via a batch learning approach. This is however not a good

solution primarily for two key reasons:

o A critical drawback of such a batch training solution
is that it suffers from extremely high re-training cost,
i.e, whenever there is a new training instance, the entire
model has to be completely re-trained from scratch,
making it non-scalable for real-world applications;

« Beside, solving Eqn.(3) directly can be computationally
very expensive for a large amount of training data;

ptvp?_apt_%d> = max(oad(ptvp?_> - d(ptvpt_) + 1)

whereM > 0 denotes thaM is a positive semi-definite (PSD)
matrix, i.e.,p' Mp > 0 for any nonzero real vectgs € R™.
Obviously, if one choose® as the identity matrixI, the
above formula is reduced to the (square) Euclidean distance
To formulate the learning task, we assume a collection of
training data instances are given (sequentially) in thenfor
of triplet constraints, i.e.? = {(ps,p;,p; ),t = 1,...,T},
where each triplet indicates the relationship of three iesag
i.e., imagep; is similar to imagep;” and dissimilar top; .
Typically, we can pose such a triplet relationship as the

following constraint To address these challenges, we present an online learning
algorithm to tackle the multi-modal distance metric leami
d(ptapj)Sd(ptap;>71’Vt:17aTa (2) task.

where—1 is a margin parameter to ensure a sufficiently Ia'%lgonthm 1 OMDML — Online Multi-modal DML
difference. = INPUT:

The above discussion generally assumes DML on single- _
modal data. We now generalize it to multi-modal data. In  * Discount weight;5 € (0,1)
particular, we assume each image can be represented by a * 'egularization paramete€: > 0
total of m feature spaces (modalities) and assume each feature * Margin parametery = 0
spaceF; is an;-dimensional vector space, i.¢5; = R™. The ~ 2: Initialization:

general idea of our multi-modal distance metric leaningpis t . 9@_: 1/m,Vi=1,...,m
learn a separate optimal distance melvE?) e R™ > for e MY =L vi=1,....m
each feature space as 3 fort=1,2,...,7 do

. . L . : . iva- + -
di(p{”.pS") = (Y — pi") MO (p{¥ —p{); M -0, 4 Receelpnp,p)

_ _ T _ 5: t(z):di(pt,p?')fdi(pt,pt_),W:1,...,m
and meanwhile learn an optimal combination of the distancg.  f, — S0 1

functions from different modalities to obtain the final apél 7. if £, + 4 > 0 then

distance function: g for i=1,2,....,m do
m o o Setz!" = H( > 0)
_ @ g (50 o ' 0 >0)
d(p1,p2) = ZH di(pi”, P3”) 10: Updated.”) | « o) p=i”
o 11: UpdateM!”), « M{" — V(" by Eq. (5)
= Y 09 —pi") ™MD (p{? — pl) 12: UpdateM!”), « PSD(M!),)
i=1 13: end for o
. o m
wheref® < [0, 1] deno_tes the combination weight for the 1% 9(#+1 = Z 10 '
th modality andp e F; denote the visual features on1% 9t+1 = 9t+1/®t+1,V’L =L...,m

the space of-th modallty In the foIIowmg, without loss of 16 end if
clarity, we will simplify denoted; (p\”, p”) asd;(p1, p») by L7 end for
removing the superscript.

To simultaneously learn both the optimal combination The key challenge to online multi-modal distance metric
weights & = (A, ...,0(™)) and the optimal individual learning tasks is to develop an efficient and scalable legrni
distance metric{M®|i = 1...,m}, we cast the multi- scheme that can optimize both the distance metric on each in-
modal distance metric learning problem into the followinglividual modality and meanwhile optimize the combinationa
optimization task: weights of different modalities. To this end, we propose to

m explore an online distance metric learning algorithm, iee.
z (@) variant of OASIS [20] and PA [44], to learn the individual dis
322 MI{I%E—O 2 Z M7 + C;& PP/ P )id) - (3) tance metric, and apply the well-known Hedge algorithm [48]




to learn the optimal combinational weights. We discuss ea8tb Low-Rank Online Multi-modal Distance Metric
of the two learning tasks in detail below. Learning Algorithm

i) ; y :
Letus denote bMt the mat(rg< on the. th.modahty at st.ep One critical drawback of the proposed OMDML algorithm
t. To Igarn the.opUm.aI metridd;” on an individual modality, ;- Algorithm 1 is the PSD projection step, which can be
following the similar ideas of OASIS [20] and PA [44], we Carlcomputationally intensive when some feature space is of

formulate the optimization task of the online distance inetrhigh dimensionality. In this section, we present a low-rank
learning as follows: learning algorithm to significantly improve the efficienayda

i . 1 i o
Mi(EJZI = argmin _HM _ ME )HF + ng (4) Scalablllty of OMDML . -
M 2 Instead of learning a full-rank matrix, for eadi(?), our
st. (P, pi,py )idi) <& €20 goal is to learn a low-rank decomposition, i.e.,
It is not difficult to derive the closed-form solution:

. . N M® .= WOTW

M2, =M OV ® |
whereW, € R"*" andr; < n;. Thus, for any two images
p1 andp., the distance function on theth modality can be

7 = min(CLe((pe,pf Py d)/ VIV ), expressed as:
Vil = (=)@ =) = (o P )P di(p1,p2) = (p1 — p2) "W W (p, —py)
In the above, we omit the superscrip} for eachps.

One main issue of the above solution, as existed in OAollowing the similar idea in the previous section, we can
SIS [20], is that it does not guarantee the resulting matrpply online learning techniques to soVé” and®,, respec-
M§21 is positive semi-definite (PSD), which is not desirablévely. In this section, we consider the Online Gradient &g
for DML. To fix this issue, at the end of each learning iteratio (OGD) approach to solvé/,"). In particular, we denote by
we will need to perform a PSD projection of the mathif @ B
onto the PSD domain: 67 = U(pe,pf,p; )i di)

= maX(O,d(pt,pf) —d(ps,p; ) +1),

wherer(” and V" are computed as follows:

Mgl = PSD(M,S:ZI).

Another key task of multi-modal DML is to learn the
optimal combinational weight® = (M), ..., 6(™), where
6 is set tol/m at the beginning of the learning task. We
apply the well-known Hedge algorithm [48] to update th
combinational weights online, which is a simple and effecti

and introduce the following notation
a=W{'p,, af =W{'p/ q; =W{'p;,

fve can compute the gradient &f’ with respect tow ®:

algorithm for online learning with expert advice. In pautir, _ 90D
given a triplet training instancép;, p;", p; ), at the end of VW = 8\7&;(”
each online learning iteration, the weight is updated devi: . (i) (i) + (i) _
oo < <aet Ogs 04" 04y 04 9q;y ) ‘
ot(il - 3 : 6(‘; @ © = \% OW® = 9qf, OWD — 9g;, OW D | lw=wi?
m o el
i=1"t

T T
o . _=2(—qf +q,)p] +2(—a+aq)p; +2(a—a;)p; .
where € (0,1) is a discounting parameter to penalize the (Ca e Ca ;P (@ e

poor modality, andzt(i) is an indicator of ranking result onwhereg; , is the j-th entry ofq;.

the current instance, i.ezt(i) = ]I(ft(i) > 0) = I(d;(ps, P;) — We then follow the idea of Online Gradient Descent [49] to
d;(pt+,p; ) > 0) which outputs 1 Wherft(i) = di(ps, ;) — updateWﬁﬁ1 of each modality as follows:

d;(pt,p; ) > 0 and O otherwise. In particularf,f“ > 0,

namely d;(p:, p;") > di(p:,p; ), indicates the current-th wi «wl - pv,w® 7)
metric makes a mistake on predicting the ranking of thestipl
(pe, PPy wheren is a learning rate parameter.

Finally, Algorithm 1 summarizes the details of the proposed Similarly, we also apply the Hedge algorithm as intro-
Online Multi-modal Distance Metric Learning (OMDML) duced in the previous section to update the combinational
algorithm. weight 6,. Finally, Algorithm 2 summarizes the details of

Remark on Space and Time complexifiie space com- the proposed Low-rank Online Multi-modal Metric Learning
plexity of the algorithm isO(>""", n;?). Denotingn = algorithm (LOMDML).
max(nq,...,ny,), the worst-case space complexity is simply Clearly this algorithm naturally preserves the PSD prop-
O(m xn?). The overall time complexity is linear with respecerty of the resulting distance metrib() = WOTW®)
to T' — the total number of training triplets. The mostnd thus avoids the needs of performing the intensive PSD
computationally intensive step is the PSD projection steprojection. By assuming alky = ... = r, = r and
which can beO(n?) for a dense matrix. Hence, the worstn = max(n1,...,n,,), the overall time complexity of the
case time overall complexity i©(T x m x n?). algorithm isO(T x m x r x n).



Algorithm 2 LOMDML—Low-rank OMDML algorithm By choosings = %, we then have
1 INPUT: v

« Discount weight parametef € (0, 1) M < 2((1 + ,/ln—m) min F(M® ¢, P) +Inm + m)
« Margin parametery > 0 T Jisizm
« Learning rate parameten:> 0
2: Initialization: 651) =1/m, ng), Vi=1,....,m In general, it is not difficult to prove the above theorem
3. fort=1,2,...,7 do by combining the results of the Hedge algorithm and the PA
4. Receive:(p:,p;,p; ) online learning, similar to the technique used in [51]. More
5: Compute;ff"') =d;(ps, P} ) —di(ps, Py ),i =1,...,m details about the proof can be found in the online suppleatent
6.  Compute:f, = Z;’;lgt@ft(l) file 1. Basically the above theorem indicates that the total
7. if ft+~ >0 then number of mistakes of the proposed algorithm is bounded by
8 for i =1,2,...,m do O(V/T) compared with the optimal single metric.
o: Setz) =1(f" > 0)
10: Updated”, « 63" 5 EXPERIMENTS
1L W§21 « W — v, W by Eq. (7) In this section, we conduct an extensive set of experiments t
12: end for . evaluate the efficacy of the proposed algorithms for sirtylar
13: O =0, 01, search with multiple types of visual features in CBIR.
1w 00 00 /0, i=1,...,m
15:  end if 5.1 Experimental Testbeds
16: end for

We adopt four publicly-available image data sets in our expe
iments, which have been widely adopted for the benchmarks
of content-based image retrieval, image classification and

4 THEORETICAL ANALYSIS - . -
) recognition tasks. TABLE 1 summarizes the statistics of¢he
We now analyze the theoretical performance of the proposgghspases.

algorithms. To be concise, we give a theorem for the bound

of mistakes made by Algorithm 1 for predicting the relative TABLE 1
similarity of the sequence of triplet training instanceshieT List of image databases in our testbed.
similar result can be derived for Algorithm 2.
For the convenience of discussions in this section, we define__Datasets | size [ classes # avg # per clasg
) ) Caltech101 8,677 101 85.91
20 =1 ( RIS 0) : Indoor 15,620 67 233.14
ImageCLEF 7,157 20 367.85
wherel(z) is an indicator function that outputswhenz is Corel 5,000 50 100
true and0 otherwise. We further define the optimal margin ImageCLEFFlickr| 1,007,157 21 47959.86
similarity function error forM (") with respect to a collection
of training example®® = {(p, p/,p; ).t =1,...,T} as The first testbed is the “caltech1®1Wwhich has been widely

i T adopted for object recognition and image retrieval [56Q][2
F(M("') (.P) = min IM® —1|[3 +2C >i—1 Le(di) This dataset contains 101 object categories and 8,677 Bnage
o M@ min(C, 1) The second testbed is the “indoor” datdsathich was used
for recognizing indoor scenes [57]. This dataset consis6¥ o
where ¢;(d;) denotes!((p:, p;,p; );d;). We then have the indoor categories, and 15,620 images. The numbers of images
following theorem for the mistake bound of the proposeid different categories are diverse, but each categoryaoost
OMDML algorithm. at least 100 images. It is further divided into 5 subsetgesto
home, public spaces, leisure, and working place. We simply
consider it as a dataset of 67 categories and evaluateaiffer
algorithms on the whole indoor collection.
The third testbed is the “ImageCLEF” datdsevhich was
also used in [58]. It is a medical image dataset and has 7,157

Theorem 1. After receiving a sequence df training ex-

amples, denoted by? = {(ps,p/,p;),t = 1,...,T},

the number of mistakes\! on predicting the ranking of
(ps, Py, p; ) made by running Algorithm 1, denoted by

T T moo images in 20 categories.
M = Y I(f>0=>1 (Z 0, £ > 0) The fourth testbed is the “Corel” dataset [7], which corssist
t=1 t=1 \i=1 of photos from COREL image CDs. It has 50 categories,
is bounded as follows each of which has exactly 100 images randomly selected from
T related examples in COREL image CDs.
M < 21n(1/8) min Zz(i) n 2lnm
- 1—p5 1<i<m t 1-p 1. http://lomdml.stevenhoi.org/
t=1 2. http://www.vision.caltech.edu/Imagbatasets/Caltech101/
2In(1/8) 2Ilnm 3. http://web.mit.edu/torralba/www/indoor.html

it Sl Al (1)
- 1-7 1glgnm PV, L P) + 1-8 4. http://imageclef.org/



We also combine “ImageCLEF" with a collection of oneFor the clustering step, we adopt a forest of 16 kd-trees and
million social photos crawled from Flickr, this larger sat i search 2048 neighbors to speed up the clustering task. By
named “ImageCLEFFIlickr”. We treat the Flickr photos as aombining different descriptors (SIFT/SURF) and vocabula
special class of background noisy photos, which are mairdizes (200/1000), we extract four types of local features:
used to test the scalability of our algorithms. SIFT200, SIFT1000, SURF200 and SURF1000. Finally, we
adopt the TF-IDF weighing scheme to generate the final
bag-of-visual-words for describing the local featurest &l

5.2 Experimental Setup
For each database, we split the whole dataset into thresitisj '€a"ning algorithms, we normalize the feature vectors guem

partitions: a training set, a test set, and a validation Iset. that every feature entry is ifo, 1].

particular, we randomly choose 500 images to form a test

set, and other 500 images to build up a validation set. TRe&# Comparison Algorithms

remaining images are used to form a training set for learnimg extensively evaluate the efficacy of our algorithms, we
similarity functions. compare the proposed two online multi-modal DML algo-

To generate side information in the form of triplet instasic&ithms, i.e., OMDML and LOMDML, against a number of
for learning the ranking functions, we sample triplet corexisting representative DML algorithms, including RCA [30
straints from the images in the training set according tar the. MNN [32], and OASIS [20]. As a heuristic baseline method,
ground truth labels. Specifically, we generate a tripletanse we also evaluate the square Euclidean distance, denoted as
by randomly sampling two images belonging to the same claguCL-*".
and one image from a different class. In total, we generateTo adapt the existing DML methods for multi-modal image
100K triplet instances for each standard dataset (except fetrieval, we have implemented several variants of each DML
the small-scale and large-scale experiments). algorithm by exploring three fusion strategies [59], [60]:

To fairly evaluate different algorithms, we choose their 1) «gest” — applying DML for each modality individually
parameters by following the same cross validation schewre. F * a1 then selecting the best modality. We name these al-
simplicity, we empirically set; = r = 50 for the i-th modality gorithms with suffix “-B”, e.g.RCA-B, in which we first
in the LOMDML algorithm and set the maximum iteration  |earn metrics over each modality separately on the train-
to 500 for LMNN. To evaluate the retrieval performance, we  jng set by Relevance Component Analysis (RCA) [30].
adopt the mean Average Precision (MAP) and fopetrieval After that, we validate the retrieval performance of all
accuracy. As a widely used IR metric, mAP value averages metrics on corresponding modality against the validation
the Average Precision (AP) value of all the queries, each get and then choose the modality with the highest mAP
of which denotes the area under precision-recall curve for a 55 the best modality. We report the mAP score over the
query. The precision value is the ratio of related examples o best modality by ranking on test set with RCA.
total retrieved examples, while the recall value is theorafi 2y “Concatenation” — an early fusion approach by concate-
related examples retrieved over total related example&én t ~ pating features of all modalities before applying DML.
database. We name these algorithms with suffix “-C”, e.tMNN-

Finally, we run all the experiments on a Linux machine with ¢ in which we first concatenateall types of features
2.33GHz 8-core Intel Xeon CPU and 16GB RAM. together, and then learn the optimal metric on this com-

bined feature space by LMNN [32], and finally evaluate
5.3 Diverse Visual Features for Image Descriptors the mAP score on the optimal metric.
We adopt both global and local feature descriptors to ektrac3) “Uniform combination” — a late fusion approach by
features for representing images in our experiments. Each uniformly combining all modalities after metric learning.

feature will correspond to one modality in the algorithm.
Before the feature extraction, we have preprocessed thgeisna
by resizing all the images to the scale50f) x 500 pixels while
keeping the aspect ratio unchanged.

Specifically, for global features, we extract five types of
features to represent an image, namely

« Color histogram and color moments £ 81),

« Edge direction histogramm(= 37),

o Gabor wavelets transformation & 120),

o Local binary pattern+ = 59),

o GIST features: = 512).

We name these algorithms with suffix “-U”, e @ASIS-
U, in which we first learn an optimal metric by OA-
SIS [20] for each modality, and thamiformly combine
all distance functions for the final ranking.

5.5 Evaluation on Small-Scale Datasets

In this section, we build four small-scale data sets, named
“Caltech101(S)”, “Indoor(S)", “COREL(S)” and “ImageCLE-
F(S)”, from the corresponding standard datasets by firsbgho
ing 10 object categories, and then randomly sampling 50
examples from each category. We adopt 5 global features

For local features, we extract the bag-of-visual-words regescribed above as the multi-modal inputs. To constrygletri

resentation using two kinds of descriptors:

constraints for online learning approaches, we generate al

o SIFT — we adopt the Hessian-Affine interest regiopositive pairs (two images belong to the same class), and

detector with a threshold of 500;

for each positive pair we randomly select an image from the

 SURF — we use the SURF detector with a threshold ather different classes to form a triplet. In total, aboukK10

500.

triplets are generated for each dataset. TABLE 2 summarizes
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Fig. 2. Evaluation of average precision at Top-K results on the datasets

the evaluation results on the small-scale data sets, froithwhgenerally tend to perform better than the best single metric
we can draw the following observations.

TABLE 2
Evaluation of the mAP performance.

[ Alg. | CcoreL(s) | caltech101(S)| Indoor(S) | ImageCLEF(S)]
Eucl-B 0.4431 0.4299 0.1726 0.4325
RCA-B 0.5097 0.4984 0.1915 0.4492

LMNN-B 0.4876 0.5462 0.1852 0.5231
OASIS-B 0.4445 0.5072 0.1884 0.4424
Eucl-C 0.5220 0.4306 0.1842 0.4431
RCA-C 0.6437 0.6156 0.2078 0.5927
LMNN-C 0.5816 0.5894 0.2027 0.5821
OASIS-C 0.5657 0.5441 0.2017 0.5618
Eucl-U 0.5220 0.4306 0.1842 0.4431
RCA-U 0.5625 0.4860 0.1894 0.4909
LMNN-U 0.6026 0.4282 0.2007 0.4647
OASIS-U 0.5679 0.5419 0.1989 0.5338
OMDML 0.6620 0.6543 0.2113 0.6824
LOMDML 0.6975 0.6646 0.2250 0.7080

approaches (with suffix“-B”). This is primarily because com
bining multiple types of features with learning could bette
explore the potential of all the features, which validates t
importance of the proposed technique.

Second, some of the uniformly combination algorithms,(i.e.
the late fusion strategy) failed to outperform the best Ising
metric approach in some cases, e.g., “RCA-U” (compared with
“RCA-B”) and “LMNN-U" (compared with “LMNN-B") on
Caltech101(S). This implies that uniform concatenationds
optimal to combine different kinds of features. Thus, it is
critical to identify the effective features via machinerlgag
and then assign them higher weights.

Third, among all the compared algorithms, the proposed
OMDML and LOMDML algorithms outperform the other
algorithms. Finally, it is interesting to observe that the-p
posed low-rank algorithm (LOMDML) not only improves the
efficiency and scalability of OMDML, but also enhances the
retrieval accuracy. This is probably because by learning me

First of all, the two kinds of fusion strategies, i.e., earlyics in intrinsic lower-dimensional space, we may potdltia
fusion (with suffix“-C”) and late fusion (with suffix“-U”), avoid the impact of overfitting and noise issues.
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TABLE 3

L . system, i.e., performing a linear projection for each image
Running time cost (in sec.) on “COREL(S)". y P g pro) 9

instancep by p «+ Wp. The time cost for retrieval on
OMDML is thus the same as the original Euclidean distance,

RCA-C | LMNN-C | OASIS-C RCA-U . . . .

507 1442.66 | 404.35 591 while the time cost on LOMDML is the same as Euclidean
LMNN-U | OASIS-U | OVMDML | LOMDML distance on dimension-reduced feature space. To avoid the
858.94 376.77 | 34765.13 55 11 trivial redundant results, we thus skip the time cost eviédna

of retrieval in our experiments.

TABLE 3 shows the running CPU time cost (in seconds) 907 Evaluation of online mistake rate of individual
the “COREL(S)” data set. We can see that, the running timngetric learning on each single modality
of LOMDML results in a speedup factor of 10 comparison to
OASIS, and the gain in efficiency will increase when the datep further examine how the proposed LOMDML algorithm
set gets larger or the data dimensionality increases. Cselye performs in comparison to individual metric learning onteac
OMDML has the extremely high computational cost becauséngle modality, we evaluate the online average mistake rat
a PSD projection is performed after each iteration, whiah c&f the proposed LOMDML algorithm and single-modal metric
be O(n?) for a dense matrix. A possible solution to tackle thi¥arning schemes on each individual modality. Figure 3 show

problem is that in we could perform the PSD projection aftédfe experimental results on the “COREL" data set. Several

a bunch of iterations, instead of after each iteration. observations can be drawn from the results as follows.
First of all, we notice that for all the schemes, the online cu
5.6 Evaluation on the Standard Datasets mulative mistake rate consistently decreases when the @eumb
of iterations increases in the online learning processosec
TABLE 4 among all kinds of features, we found that the scheme of
Evaluation of the mAP performance. single-modal metric learning on “Surf1000” achieved thstbe

performance. Finally, by comparing the proposed LOMDML
scheme and the best single-modal metric learning, we found

[ Alg. | COREL ] Caltech101] Indoor | ImageCLEF]

ggiig 8'%2(7); 85;2; 8'8288 8'28?8 that LOMDML consistently achieves the smaller mistake rate
OASISB 01958 03025 00522 06723 than that of the best single-modal metric learning scheme
EuclC 55698 55550 | 0.0559 05750 in the entire online learning process. This encouraginglres
RCAC | 02714 | 02473 1 0.0604] 06272 again validates the efficacy of the proposed multi-modahen!
OASIS-C | 0.3202 0.3660 0.0726 0.7394 learning scheme for combining multiple modalities in an
EuckU | 0.2628 | 0.2259 | 0.0559| 0.5752 effective way.
RCA-U 0.2992 | 0.2413 | 0.0565| 0.6161 Corel
OASIS-U | 0.3594 0.3243 0.0705 0.6891 0.35 : : ‘ ; ‘
[LOMDML | 04137 | 04128 [ 00804 08155 | GRS Edge
0.3r 1
We further evaluate the proposed algorithms on standard o2 ‘ ‘ ‘ ‘ ‘ s
sized image datasets. We exclude LMNN and OMDML be-% ' ‘\ . Laist
cause of their extremely high computational cost. Follgvin ¢ — s Savor
the standard experimental setup with 5 global features and - —~— v ] cuh00

Mistal

local features, TABLE 4 summarizes the experimental result
Figure 2 presents the top-K precisions on four datasets an
TABLE 5 shows the running time cost on the COREL dataset 0.1
with 100K triplet instances. From the results, we obserbed t

the proposed LOMDML algorithm considerably surpasses all 005 —— 4545 ¢ 1o

the other approaches for most cases. This clearly validate t x 10°

the efficacy of the proposed algorithm for learning effeztiv

metrics on multi-modal data. Finally, in terms of the timé&ig- 3. Evaluation of online mistake rates of LOMDML
cost, the proposed LOMDML algorithm is considerably morand single-modal metric learning on individual modalities
efficient and scalable than the other algorithms, making Qf the “Corel” dataset

practical for large-scale applications.

0.15 Te———— g ep
Sift1000

& Surf1000

» LOMDML

_ TABLES . ., 5.8 Comparison with Online Multi-modal Distance
Running time (in sec.) on “COREL". Learning (OMDL) with Multiple Kernels
RCA-C | OASIS-C | RCA-U | OASIS-U | LOMDML In this section, we compare the proposed LOMDML algo-
468.19 | 65060.93| 184.3 | 8781.54 789.81 rithm with an existing Online Multi-modal Distance Leargin

method (OMDL-LR) [40], which is a kernel-based low-rank
Remark.We note that the learnt metric/function can benline learning approach to learning distance functions on
easily integrated into a generic image indexing and redtievmulti-modal data by combining multiple kernels. We evatuat
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ImageCLEF+Flickr

TABLE 6 : :
Comparison between LOMDML and OMDL-LR 0ol Egég;ccc
(gaussianmeanvar). —
0.85f I | OMDML[H
| Metric [ Dataset | LOMDML | OMDL-LR |
COREL(S) 0.6975 0.6693 |
AP Caltech101(S)| 0.6646 | 0.5994 Eonsl
Indoor(S) 0.2250 0.2088
ImageCLEF(S)| 0.7080 0.6729 07k
[ Time cost (insec.) COREL(S) | 2211 | 20957 |
0.65-
COREL(S) Caltech101(S) 06
0,670 20 40 60 80 100
0.600 @K
oo 0595 Fig. 5. Precision at Top-K on “ImageCLEF+Flickr”

0.660

0.655 0.590

5.9 Evaluation on the Large-scale Dataset

To examine its scalability, we apply the proposed algorithm
on a large-scale image retrieval application on “ImageCLE-
Indoor(S) ImageCLEF(S) F+Flickr”, which has over one million images and 300K triple
training data. TABLE 7 shows the mAP performance of the
five algorithms.

0.650 0.585

0.645
0 5 10 15 20 0 5 10 15 20

0.209 0.675

o2 o TABLE 7
0.207 0665 Evaluation of mAP on the “ImageCLEF+Flickr” dataset.
0.206 0.660
Eucl-C | RCA-C | OASIS-C | RCA-U | OASIS-U | LOMDML
0 5 1 15 2 0 5 1 15 2 05766 | 0.6163 | 0.7161 | 0.6219 | 0.7028 0.7413
Fig. 4. Evaluation of the mAP (y-axis) of OMDL-LR w.r.t. ) _
the number of Nearest Neighbors (x-axis). Clearly, our proposed algorithm OLMDML achieves the

best mAP. Figure 5 presents the top-K precisions on Image-
CLEF+Flickr. We can have the similar observation that our

the mAP performance and the training time cost of OMDL-LRroposed methods significantly outperform the state of the
on four datasets, “COREL(S)”, “Caltech101(S)”, “Indooy(S art, in terms of precision. In short, the proposed algorithm
and “ImageCLEF(S)”, under the same experimental settigggnificantly outperforms the state of the art, in terms ahbo
as the previous sections. The parameters for the OMDL-LRAP and retrieval accuracy performance measures.
algorithm are set as follows: (i, g, the dimensionality of the

low-rank for all the models is set to 50, the same as the ragkio0 Qualitative Comparison

setting of r for the LOMDML algorithm; (ii) other hyper-

i includi o d th b ¢ tFinaIIy, to examine the qualitative retrieval performanee
parameters, including’y, C'5,7 an € number o neares.randomly sample some query images from the query set, and

nelghﬁors ('NN") fortg:japhl!_dap;!a0|an,ta|;:¢ de;errﬁlnedt?]wgrlg%npare the qualitative image similarity search by différe
search on a separated validation set. Fig. 4 shows the m gorithms. Figure 6 shows the comparison of retrievalltesu

with respect to "NN" on each dataset. on “COREL" and “Caltech101” datasets using different algo-

th FtrﬁthgiAEqmparls%n t:estlrl]ts '%J'QELLERG ;/ve Obsfe:;]'eﬁthms. From the visual results, we can see that LOMDML
a IS even better than "L In lerms o egenerally returns more related results than the other inasel

MAP performance. This may seem counterintuitive as OMDL-
LR is a kernel-based approach. However, we conjecture that

this is primarily because OMDL-LR fairly depends on a goo@ CONCLUSIONS

selection of the underlying kernels and the parametersef thhis paper investigated a novel family of online multi-mbda
kernel functions. With carefully selected kernels, OMDR-L distance metric learning (OMDML) algorithms for CBIR tasks
would likely achieve better results. However, how to tunby exploiting multiple types of features. We pinpointed som
and find the best kernels is beyond the scope of this papmajor limitations of traditional DML approaches in praetjc

In terms of training time cost, we observed that LOMDMLand presented the online multi-modal DML method which
is considerably more efficient than OMDL-LR. Similar tosimultaneously learns both the optimal distance metric on
OMDML, the most computationally intensive step in OMDL-each individual feature space and the optimal combination
LR is the PSD projection, which can k@(r3) for a dense of multiple metrics on different types of features. Further
matrix, thus the overall time complexity 8(7 x m x r?). In  we proposed the low-rank online multi-modal DML algorithm
the above experiment, the dimensions of raw features rang®©MDML), which not only runs more efficiently and scal-
from 37 to 512, which are much smaller thah = 2500. ably, but also achieves the state-of-the-art performanceng
Thus, LOMDML consumes much less time than OMDL-LRthe competing algorithms in our experiments. Future work ca



extend our framework in resolving other types of multimodgt2]
data analytics tasks beyond image retrieval.

[23]
ACKNOWLEDGEMENTS

This work was supported by Singapore MOE tier-1 researgly
grant from Singapore Management University, Singapore.

[25]
REFERENCES

[1] M.S.Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-daseltimedia  [26]
information retrieval: State of the art and challengeMultimedia
Computing, Communications and Applications, ACM Trarieast on
vol. 2, no. 1, pp. 1-19, 2006. [27]

[2] Y. Jing and S. Baluja, “Visualrank: Applying pagerank large-scale
image search,Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on vol. 30, no. 11, pp. 1877-1890, 2008.

[3] D. Grangier and S. Bengio, “A discriminative kernel-bdsapproach [28]
to rank images from text queriesPattern Analysis and Machine
Intelligence, |IEEE Transactions pwol. 30, no. 8, pp. 1371-1384, 2008.

[4] A. K. Jain and A. Vailaya, “Shape-based retrieval: a cagely with [29]
trademark image databas®attern Recognitionno. 9, pp. 1369-1390,
1998.

[5] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth movéstadce as [30]
a metric for image retrieval,International Journal of Computer Vision
vol. 40, p. 2000, 2000.

[6] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and Jin, [31]
“Content-based image retrieval at the end of the early ye®attern
Analysis and Machine Intelligence, IEEE Transactions ool. 22,
no. 12, pp. 1349-1380, 2000. [32]

[7] S.C. Hoi, W. Liu, M. R. Lyu, and W.-Y. Ma, “Learning distaa metrics
with contextual constraints for image retrieval,” Btoceedings of IEEE
Conference on Computer Vision and Pattern Recognitidaw York, [33]
US, Jun. 17-22 2006, dCA.

[8] L.Si,R.Jin, S.C. Hoi, and M. R. Lyu, “Collaborative imagetrieval via
regularized metric learningACM Multimedia Systems Journalol. 12, [34]
no. 1, pp. 3444, 2006.

[9] S. C. Hoi, W. Liu, and S.-F. Chang, “Semi-supervised afise metric
learning for collaborative image retrieval,” ifroceedings of IEEE
Conference on Computer Vision and Pattern Recognitiom. 2008. [35]

[10] G. H. J. Goldberger, S. Roweis and R. Salakhutdinov,igNeourhood
components analysis,” ildvances in Neural Information Processing
Systems2005.

[11] K. Fukunaga/ntroduction to Statistical Pattern RecognitionElsevier, [36]
1990.

[12] A. Globerson and S. Roweis, “Metric learning by collags classes,”
in Advances in Neural Information Processing Syste2@§5.

[13] L. Yang, R. Jin, R. Sukthankar, and Y. Liu, “An efficientgarithm for
local distance metric learning,” iAssociation for the Advancement of
Artificial Intelligence 2006.

[14] A. K. Jain and A. Vailaya, “Image retrieval using colond shape,”
Pattern Recognitionvol. 29, pp. 1233-1244, 1996.

[15] B. S. Manjunath and W.-Y. Ma, “Texture features for beimg and
retrieval of image data,Pattern Analysis and Machine Intelligence,
IEEE Transactions gnvol. 18, no. 8, pp. 837-842, 1996.

[16] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W.Freeman,
“Discovering objects and their location in images,”IEEE Conference [40]
on Computer Vision and Pattern Recognitid@2005.

[17] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, &Emating  [41]
bag-of-visual-words representations in scene classdicatin ACM
International Conference on Multimedia Information Rewal 2007,
pp. 197-206. [42]

[18] D. G. Lowe, “Object recognition from local scale-iniamt features,” in
IEEE International Conference on Computer Visid®999, pp. 1150—
1157. [43]

[19] R. S. Mohammad Norouzi, David Fleet, “Hamming distaroetric
learning,” inAdvances in Neural Information Processing Syste2042.

[20] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Largals online [44]
learning of image similarity through rankingJournal of Machine
Learning Researchvol. 11, pp. 1109-1135, 2010.

[21] H. Chang and D.-Y. Yeung, “Kernel-based distance mdearning for [45]
content-based image retrievalfhage and Vision Computingrol. 25,
no. 5, pp. 695-703, 2007.

[37]

(38]

[39]

12

R. Salakhutdinov and G. Hinton, “Semantic hashinfpternational
Journal of Approximate Reasoningol. 50, no. 7, pp. 969-978, Jul.
2009. [Online]. Available: http://dx.doi.org/10.1014r.2008.11.006
H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. PenezCaSchmid,
“Aggregating local image descriptors into compact codH#sSEE Trans.
Pattern Anal. Mach. Intell.vol. 34, no. 9, pp. 1704-1716, Sep. 2012.
[Online]. Available: http://dx.doi.org/10.1109/TPAN2011.235

K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisseam “The devil
is in the details: an evaluation of recent feature encodimeghods,” in
BMVC, 2011, pp. 1-12.

A. Joly and O. Buisson, “Random maximum margin hasHirg,
Proceedings of IEEE Conference on Computer Vision and Patte
Recognition (CVPR’11)Washington, DC, USA, 2011, pp. 873-880.
D. Zhai, H. Chang, S. Shan, X. Chen, and W. Gao, “Multiwimetric
learning with global consistency and local smoothne&€M Trans. on
Intelligent Systems and Technologypl. 3, no. 3, p. 53, 2012.

W. Di and M. Crawford, “View generation for multiview meamum dis-
agreement based active learning for hyperspectral imagsification,”
Geoscience and Remote Sensing, IEEE Transactionsabn50, no. 5,
pp. 1942-1954, 2012.

S. Akaho, “A kernel method for canonical correlationabysis,” in In
Proceedings of the International Meeting of the Psychoimedociety
Springer-Verlag, 2001.

J. D. R. Farquhar, H. Meng, S. Szedmak, D. R. Hardoon,Jar8hawe-
taylor, “Two view learning: Svm-2k, theory and practicej’ Advances
in Neural Information Processing SystemaMlIT Press, 2006.

A. Bar-Hillel, T. Hertz, N. Shental, and D. WeinshallL.€arning distance
functions using equivalence relations,” froceedings of International
Conference on Machine Learning003, pp. 11-18.

J.-E. Lee, R. Jin, and A. K. Jain, “Rank-based distanetrimlearning:
An application to image retrieval,” iProceedings of IEEE Conference
on Computer Vision and Pattern Recogniticknchorage, AK, 2008.
K. Weinberger, J. Blitzer, and L. Saul, “Distance mettearning for
large margin nearest neighbor classification,” Advances in Neural
Information Processing Systen®006, pp. 1473-1480.

C. Domeniconi, J. Peng, and D. Gunopulos, “Locally d@iyapmetric
nearest-neighbor classificatiolEEE Trans. Pattern Analysis and Ma-
chine Intelligencevol. 24, no. 9, pp. 1281 — 1285, 2002.

P. Wu, S. C. H. Hoi, P. Zhao, and Y. He, “Mining social inesgwith
distance metric learning for automated image tagging,Pioceedings
of the fourth ACM international conference on Web search dath
mining ACM, 2011, pp. 197-206.

P. Wu, S. C. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao, “iDal
multimodal deep similarity learning with application toage retrieval,”
in Proceedings of the 21st ACM international conference ortilviedia
ACM, 2013, pp. 153-162.

X. Gao, S. C. Hoi, Y. Zhang, J. Wan, and J. Li, “Soml: Spaasiline
metric learning with application to image retrieval,” Rroceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligen2014.

P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman, “Onlinmetric
learning and fast similarity search,” ikdvances in Neural Information
Processing System2008, pp. 761-768.

R. Jin, S. Wang, and Y. Zhou, “Regularized distance imd&arning:
Theory and algorithm,” inAdvances in Neural Information Processing
Systems2009, pp. 862—-870.

D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. He, and C. Miao, “teag
to name faces: a multimodal learning scheme for searchdbesee
annotation,” inSIGIR 2013, pp. 443-452.

H. Xia, P. Wu, and S. C. H. Hoi, “Online multi-modal distze learning
for scalable multimedia retrieval,” ilVSDM 2013, pp. 455-464.

S. Shalev-Shwartz, “Online learning and online coneptimization,”
Foundations and Trends in Machine Learningl. 4, no. 2, pp. 107-
194, 2011.

S. C. Hoi, J. Wang, and P. Zhao, “Libol: A library for oné learning
algorithms,” Journal of Machine Learning Researclvol. 15, pp.
495-499, 2014. [Online]. Available: https://github.canBOL

F. Rosenblatt, “The perceptron: A probabilistic modiet information
storage and organization in the braiR8ychological Reviewol. 7, pp.
551-585, 1958.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, én&inger,
“Online passive-aggressive algorithmgpurnal of Machine Learning
Researchvol. 7, pp. 551-585, 2006.

M. Dredze, K. Crammer, and F. Pereira, “Confidence-wid linear
classification,” inProceedings of International Conference on Machine
Learning 2008, pp. 264-271.



[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regiziation of

weight vectors,” inAdvances in Neural Information Processing System

2009, pp. 414-422.

P. Zhao, S. C. H. Hoi, and R. Jin, “Double updating onliearning,”
Journal of Machine Learning Researcbol. 12, pp. 1587-1615, 2011.
Y. Freund and R. E. Schapire, “A decision-theoretic eafization of
on-line learning and an application to boostinggurnal of Computer
and System Sciengegol. 55, no. 1, pp. 119-139, 1997.

M. Zinkevich, “Online convex programming and genezed infinites-

imal gradient ascent,” ifProceedings of International Conference on

Machine Learning 2003, pp. 928-936.

S. C. H. Hoi, J. Wang, P. Zhao, R. Jin, and P. Wu, “Fast bednonline
gradient descent algorithms for scalable kernel-basetheomearning,”
in ICML, 2012.

S. C. Hoi, R. Jin, P. Zhao, and T. Yang, “Online multiplerkel
classification,”Machine Learningvol. 90, no. 2, pp. 289-316, 2013.
Y. Freund and R. E. Schapire, “Adaptive game playingngsimulti-
plicative weights,”"Games and Economic Behavjoml. 29, no. 1, pp.
79-103, 1999.

Y. Li and P. M. Long, “The relaxed online maximum margigaithm,”
in Advances in Neural Information Processing Systel®99, pp. 498—
504.

L. Bottou and Y. LeCun, “Large scale online learningy’ Advances in
Neural Information Processing Systen2903.

S. C. Hoi, M. R. Lyu, and R. Jin, “A unified log-based redece
feedback scheme for image retrievd{fiowledge and Data Engineering,
IEEE Transactions gnvol. 18, no. 4, pp. 509-204, 2006.

G. Griffin, A. Holub, and P. Perona, “Caltech-256 objezitegory
dataset,” California Institute of Technology, Tech. Ref9%, 2007.

A. Quattoni and A. Torralba, “Recognizing indoor scefien |IEEE
Conference on Computer Vision and Pattern RecognitRf09.

L. Yang, R. Jin, L. B. Mummert, R. Sukthankar, A. Goode, Aeng,

S. C. H. Hoi, and M. Satyanarayanan, “A boosting framework fo

visuality-preserving distance metric learning and its l@pgion to

medical image retrieval, Pattern Analysis and Machine Intelligence,

IEEE Transactions gnvol. 32, no. 1, pp. 30—44, 2010.
C. G. Snoek, M. Worring, and A. W. Smeulders, “Early verdate

fusion in semantic video analysis,” iRroceedings of the 13th annual

ACM international conference on Multimedia005, pp. 399-402.

J. Kludas, E. Bruno, and S. Marchand-Malillet, “Infortioa fusion
in multimedia information retrieval,’Adaptive Multimedial Retrieval:
Retrieval, User, and Semantjgsp. 147-159, 2008.

Pengcheng Wu received his PhD degree from
the School of Computer Engineering at the
Nanyang Technological University, Singapore,
and his bachelor degree from Xiamen University,
P.R. China. He is currently a research fellow in
the School of Information Systems, Singapore
Management University. His research interest-
s include multimedia information retrieval, ma-
chine learning and data mining.

13

Steven C. H. Hoi is currently an Associate
Professor of the School of Information Sytems,
Singapore Management Unviersity, Singapore.
Prior to joining SMU, he was Associate Profes-
sor with Nanyang Technological University, Sin-
gapore. He received his Bachelor degree from
Tsinghua University, P.R. China, in 2002, and his
Ph.D degree in computer science and engineer-
ing from The Chinese University of Hong Kong,
in 2006. His research interests are machine
learning and data mining and their applications
to multimedia information retrieval (image and video retrieval), social
media and web mining, and computational finance, etc, and he has
published over 150 refereed papers in top conferences and journals
in these related areas. He has served as Associate Editor-in-Chief for
Neurocomputing Journal, general co-chair for ACM SIGMM Workshops
on Social Media (WSM'09, WSM'10, WSM'11), program co-chair for the
fourth Asian Conference on Machine Learning (ACML12), book editor
for “Social Media Modeling and Computing”, guest editor for ACM Trans-
actions on Intelligent Systems and Technology (ACM TIST), technical
PC member for many international conferences, and external reviewer
for many top journals and worldwide funding agencies, including NSF in
US and RGC in Hong Kong.

Peilin Zhao received his PhD from the School
of Computer Engineering at the Nanyang Tech-
nological University, Singapore, in 2012 and
his bachelor degree from Zhejiang University,
Hangzhou, P.R. China, in 2008. His research
interests are statistical machine learning, and
data mining.

Chunyan Miao is an Associate Professor in the
School of Computer Engineering at Nanyang
Technological University (NTU). Her research
focus is on infusing intelligent agents into in-
teractive new media (virtual, mixed, mobile and
pervasive media) to create novel experiences
and dimensions in game design, interactive nar-
rative and other real world agent systems. She
has done significant research work her research
- areas and published many top quality interna-
tional conference and journal papers.

Zhi-Yong Liu received his Bachelor degree of
Engineering from Tianjin University in 1997,
.. Master degree of Engineering from Chinese A-
" cademy of Sciences in 2000, and Ph.D degree
from the Chinese University of Hong Kong in
2003. He is currently a professor at the State
Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chi-
nese Academy of Sciences, China. His research
interests include image analysis, pattern recog-
nition, machine learning and computer vision.



14

Fig. 6. Qualitative evaluation of top-5 retrieved images by different algorithms. For each block, the first image is the
query, and the results from the first line to the sixth line represents “Eucl-C”, “RCA-C”, “OASIS-C”, “RCA-U", “OASIS-U”
and “LOMDML”’ respectively. The left column is from the “Corel” dataset and the right is from the “Caltech101” dataset.



