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Abstract

Autoregressive integrated moving average (ARIMA) is one
of the most popular linear models for time series forecasting
due to its nice statistical properties and great flexibility. How-
ever, its parameters are estimated in a batch manner and its
noise terms are often assumed to be strictly bounded, which
restricts its applications and makes it inefficient for handling
large-scale real data. In this paper, we propose online learn-
ing algorithms for estimating ARIMA models under relaxed
assumptions on the noise terms, which is suitable to a wider
range of applications and enjoys high computational efficien-
cy. The idea of our ARIMA method is to reformulate the ARI-
MA model into a task of full information online optimization
(without random noise terms). As a consequence, we can on-
line estimation of the parameters in an efficient and scalable
way. Furthermore, we analyze regret bounds of the proposed
algorithms, which guarantee that our online ARIMA model
is provably as good as the best ARIMA model in hindsight.
Finally, our encouraging experimental results further validate
the effectiveness and robustness of our method.

Introduction
In the past decades, time series forecasting has played an
important role in a wide range of domains including speech
analysis (Rabiner and Schafer 2011), noise cancelation
(Gao et al. 2010), and financial market analysis (Hamilton
1994; Brockwell and Davis 2009; Rojo-Álvarez et al. 2004;
Granger and Newbold 2014; Nerlove, Grether, and Carval-
ho 2014; Tsay 2005; Li and Hoi 2015). Typically, time series
models can collect past observations and uncover their un-
derlying relationship. Among the existing time series mod-
els, a fundamental one is the autoregressive moving aver-
age (ARMA) model (Hamilton 1994), originated from the
autoregressive model (AR) and the moving average model
(MA). Theoretically, if there is no missing data (Weigend
1994) for a stationary time series, then this model can learn
an identified underlying process to mimic observations for
predicting signal in the future. In practice, ARMA can de-
scribe the behavior of a noisy linear dynamical system, and
is able to represent several different types of time series, due
to its flexible modeling capability.
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Despite its great success, ARMA assumes the underlying
model is linear, which hinders its applications to many chan-
llenging real-world time series. To solve this issue, the au-
toregressive integrated moving average (ARIMA) model has
been proposed as an extension of ARMA, which can tackle
nonstationary time series forecasting by differencing tech-
niques. Specifically, differencing techniques can eliminate
the influences of trend components of data before ARIMA
model can be fitted when the observations present trend and
heteroscedasticity. However, most of existing ARIMA mod-
els still suffer from many limitations. First of all, most of
them rely on some strong assumptions with respect to the
noise terms (such as i.i.d. assumption (Hamilton 1994), t-
distribution (Damsleth and El-Shaarawi 1989);(Tiku et al.
2000)) and loss functions, while many real applications may
not fully satisfy these assumptions, which makes such ARI-
MA models unsuitable to many scenarios. Second, exist-
ing algorithms for estimating parameters of ARIMA, such
as least squares and maximum likelihood based methods
(Hamilton 1994), require to access the entire dataset in ad-
vance, which violates the streaming characteristics of time
series data and cannot deal with concept-drift issues. In ad-
dition, these batch approaches cannot cope with large-scale
datasets due to memory-intensive bottleneck.

To solve these issues, we propose online learning algo-
rithms to efficiently estimate parameters of ARIMA by uti-
lizing its recursive formulation in an online learning setting.
Our novel approach allows the noise to be arbitrarily or even
adversarially generated, making it more general to handle a
wider range of time series prediction tasks. Moreover, our
online learning approach handles data observations arriving
sequentially and updates the models simultaneously, which
is more natural for many real-world applications. Finally, the
memory cost of our algorithm is independent of the sam-
ple size, significantly more scalable to deal with real-time
time series forecasting tasks in the era of big data (Shalev-
Shwartz et al. 2011; Hoi, Wang, and Zhao 2014).

Our Contributions. We propose a novel online learning
method to estimate the parameters of ARIMA models by
reformulating it into a full information online optimization
task (without random noise terms). Theoretically, we give
the regret bounds which show that the solutions produced
by our method asymptotically approaches the best ARIMA
model in hindsight. Moreover, we show that a recent online



ARMA model (Anava et al. 2013) can be viewed as a spe-
cial case of our online ARIMA, and our experimental result
empirically validates that online ARIMA algorithms consid-
erably outperform the existing online ARMA algorithms.

The rest of this paper is organized as follows. We first re-
view related work, followed by introducing the problem set-
up of time series prediction. Then we present the proposed
method, followed by theoretical analysis. After, we discuss
empirical results, and finally conclude this work.

Related Work
Some of the earliest works on ARIMA consider the squared
loss and assume the noise follows an i.i.d. random sequence
(Hamilton 1994; George 1994; Brockwell and Davis 2009).
This assumption allows the use of statistical properties as
well as the well-known Box-Jenkins methodology (George
1994) in the model building process. Later, such assump-
tion has been relaxed by using other assumptions such as
t-distribution of noise (Damsleth and El-Shaarawi 1989;
Tiku et al. 2000) for the squared loss. In addition, the bis-
pectral analysis and the Pade approximation were also uti-
lized to estimate non-Gaussian ARMA models in (Lii 1990;
Huang and Shih 2003). Moreover, the ARCH model was
proposed in (Engle 1982), which can remove the indepen-
dence assumption and offer specific dependency model.

In literature, very few study has seriously investigated s-
calable algorithms for ARIMA models, although some sim-
ple methods were attempted. For example, the iterated least-
squares approach was developed to consistently estimate au-
toregressive parameters (Tsay and Tiao 1984). Least squares
and gradient algorithms are presented through estimating
residuals, for which a convergence analysis is also given by
using the martingale convergence theorem (Ding, Shi, and
Chen 2006). Nevertheless, none of these has been formally
formulated in a standard online learning setting.

The closest related work is the online ARMA model for
time series prediction in (Anava et al. 2013). Our online
ARIMA model differs from their study in several key as-
pects. First, unlike online ARMA model that assumes time
series data is stationary, online ARIMA model relaxes such
assumption and thus can deal with non-stationary time se-
ries forecasting with trend or heteroscedasticity more ef-
fectively. Second, the theoretical anaysis in (Anava et al.
2013) assumes a restricted constraint on the coefficients β,
which is a sufficient condition for a stationary time series
process but not necessary. By contrast, we remove such re-
stricted assumption, and thus make our theoretical analysis
results more general. Finally, we apply a different analysis
method by exploring difference equation techniques (Hamil-
ton 1994), and obtain a regret boundO

(
log(Tq) log T

)
that

is better than their result O(q log T log T ), where q is the
number of coefficients for modeling the noise and T is the
total of iterations.

Online ARIMA
In this section, we will mainly review the problem setup for
time series prediction, and some time series models.

Time Series Modeling
A time series is defined as a sequence of quantitative ob-
servations at successive time. We assume time is a discrete
variable, Xt denotes the observation at time t, and εt de-
notes the zero-mean random noise term at time t. The MA(q)
(short for Moving Average) model considers the process:
Xt =

∑q
i=1 βiεt−i+ εt, where βi is a coefficient. Similar to

MA(q) models, Autoregression model, denoted by AR(k),
satisfiesXt =

∑k
i=1 αiXt−i+εt. In other words, it assumes

each Xt is a noisy linear combination of the previous k ob-
servations. This is similar to traditional multiple regression
model, but Xt is regressed on past values of Xt.

A more sophisticated model is the ARMA(k, q) (short for
autoregressive moving average), which is a combination of
AR(k) and MA(q) with a compact form and provides a flex-
ible modeling framework. This model assumes that Xt is
generated via the formula:

Xt =

q∑
i=1

βiεt−i +

k∑
i=1

αiXt−i + εt,

where again εt are zero-mean noise term. If we ad-
d some constraint to the weights of AR(k) part, it can
guarantee a stationary process. A stationary and invertible
ARMA(k, q) model may be represented either as an infi-
nite AR model(AR(∞)) or an infinite MA model(MA(∞)).
Compared with AR(∞) and MA(∞), ARMA(k, q) can
generate stationary stochastic processes with only a finite
number of parameters (Hamilton 1994).

ARIMA Model
Nevertheless, time series data are usually not realization-
s of a stationary process. For example, some of them may
contain deterministic trends. An effective way to handle
such strong serial correlations is to consider the differential
method. For example, one can compute the first order dif-
ferences of Xt by ∇Xt = Xt −Xt−1 and the second order
differences of Xt by∇2Xt = ∇Xt −∇Xt−1.

If the sequence of∇dXt satisfies an ARMA(k, q), we say
that the sequence of Xt satisfies the ARIMA(k, d, q) (short
for AutoRegressive Integrated Moving Average)

∇dXt =

q∑
i=1

βiεt−i +

k∑
i=1

αi∇dXt−i + εt, (1)

which are parameterized by three terms k, d, q and weights
vector α ∈ Rk and β ∈ Rq . Note that ARMA(k, q) is a
special case of the ARIMA(k, d, q), where the differences
order is zero.

Forecasting with ARIMA(k, d, q) is a reversion of dif-
ferential process. Suppose time series sequence Xt satisfies
ARIMA(k, d, q), we can predict the d-th order differential
of observation at time t+ 1 as∇dX̃t+1 and then predict the
observation at time t+ 1 as X̃t:

X̃t = ∇dX̃t +

d−1∑
i=0

∇iXt−1. (2)



Online ARIMA Algorithms
We follow a typical game-theoretic framework for online
learning with ARIMA models, where an online player se-
quentially commits to a decision and then suffers from a loss
which may be unknown to the decision maker ahead of time.
It can be adversarial or even depend on the actions taken by
the decision maker. In the online setting of ARIMA, we as-
sume coefficient vectors (α, β) are fixed by the adversary.
At time t, the adversary chooses the noise εt and then gener-
ates the resulting observation Xt based on Eq. 1 and Eq. 2.
It is important to note that the true values of both (α, β) and
εt are not disclosed to the learner at any time.

Consider an online ARIMA iteration at time t, the learner
makes a prediction X̃t, and then the true Xt is disclosed to
the learner. As a result, the learner suffers a loss `t(Xt, X̃t).
More formally, we can define the loss function as follows:

ft(α, β) = `t(Xt, X̃t(α, β)) (3)

=`t(Xt, (∇dX̃t +

d−1∑
i=0

∇iXt−1))

=`t(Xt, (

q∑
i=1

βiεt−i +

k∑
i=1

αi∇dXt−i +

d−1∑
i=0

∇iXt−1)).

The goal of online ARIMA learning is to minimize the sum
of losses over some number of rounds T . More formally, we
can define the regret of the learner after T rounds as:

RT =

T∑
t=1

`t(Xt, X̃t)−min
α,β

T∑
t=1

`t(Xt, X̃t(α, β)).

Our goal is to devise an efficient algorithm that can guar-
antee the regret grows sublinearly as a function of T , i.e.,
RT ≤ o(T ), implying that the per-round regret of the learn-
er will vanish as T increases.

Given the loss function defined in Eq. 3, one might con-
sider to apply some existing online convex optimization
techniques to estimate the coefficient vectors (α, β) for the
online ARIMA learning task . However, this is not possible
since the noise terms {εt} are unknown to the learner at any
time of the online learning process. As a result, even (α, β)
is given, we cannot perform a prediction due to the unknown
noise terms. To tackle this challenge, we follow the idea of
improper learning principle (Anava et al. 2013) to design a
solution where the prediction does not come directly from
the original ARIMA model, but from a modified ARIMA
model (without the explicit noise terms) that approximates
the original model.

Specifically, we propose to approximate the original
ARIMA(k, d, q) model with another ARIMA(k +m, d, 0)
model (without the noise terms), where m ∈ N is a properly
chosen constant such that the new ARIMA model with an
(m+ k)-dimensional coefficient vector γ ∈ Rm+k is effec-
tive enough to approximate the original prediction:

X̃t(γ
t) =

k+m∑
i=1

γi∇dXt−i +

d−1∑
i=0

∇iXt−1.

As a result, the loss function becomes

`mt (γt) = `t(Xt, X̃t(γ
t))

=`t(Xt, (

k+m∑
i=1

γi∇dXt−i +

d−1∑
i=0

∇iXt−1)).
(4)

The remaining issue is how to choose an appropriate value
for parameter m, and what will be the regret with such ap-
proximation. We will quantify the result in Theorem 1 later.
In the following, we focus on presenting two specific online
ARIMA algorithms using two popular online convex opti-
mization solvers (Bubeck 2011): Online Gradient Descent
(ODG) method (Zinkevich 2003) and Online Newton Step
(ONS) (Hazan, Agarwal, and Kale 2007).

ARIMA Online Newton Step (ARIMA-ONS). We first
introduce a few notations. We denote by K the decision
set of candidate (m + k)-dimensional coefficient vectors,
i.e., K =

{
γ ∈ Rm+k, |γj | ≤ 1, j = 1, . . . ,m

}
, and

D = 2c ·
√
m+ k the diameter of K. Further, we denote by

G the upper bound of ‖∇`mt (γ)‖ for all t and γ ∈ K, which
equals to 2c ·

√
m+ k(Xmax)2 for the squared loss. Finally,

we denote by λ the exp-concavity parameter of the loss func-
tions {`mt }Tt=1 which guarantees e−λ`

m
t (γ) is concave for all

t. For specific case with the squared loss, λ = 1
m+k .

Algorithm 1 shows the proposed ARIMA-ONS algorith-
m that iteratively optimizes the coefficient vectors γt of the
online ARIMA model by applying the Online Newton Step
solver (Hazan, Agarwal, and Kale 2007). Note that the pro-
jection is done by

∏At

K (y) = arg minx∈K(y−x)>At(y−x)
and the inverse of matrix At typically can be computed ef-
ficiently using the Sherman-Morrison formula. The regret

Algorithm 1 ARIMA-ONS(k, d, q)

Input: parameter k, d, m; learning rate η; initial (m +
k)× (m+ k) matrix A0.
Set m = logλmax

((TLMmaxq)
−1).

for t = 1 to T − 1 do
predict X̃t(γ

t) =
∑k+m
i=1 γi∇dXt−i+

∑d−1
i=0 ∇iXt−1;

receive Xt and incur loss `mt (γt);
Let ∇t = ∇`mt (γt), update At ← At−1 +∇t∇>t ;
Set γt+1 ←

∏At

K (γt − 1
ηA
−1
t ∇t);

end for

bound of ARIMA-ONS will be analyzed later.

ARIMA Online Gradient Descent (ARIMA-OGD). We
now apply a more general online convex optimization solver,
Online Gradient Descent (Zinkevich 2003), which is appli-
cable to any convex loss functions. Algorithm 2 presents the
proposed ARIMA-OGD algorithm for optimizing the coef-
ficient vector using the OGD algorithm. It has a worse regret
bound compared as ARIMA-ONS but computationally more
efficient. The projection

∏
K(y) refers to the Euclidean pro-

jection onto K, i.e.,
∏
K(y) = arg minx∈K ‖y − x‖2.



Algorithm 2 ARIMA-OGD(k,d,q)
Input: parameter k, d, q; learning rate η.
Set m = logλmax

((TLMmaxq)
−1).

for t = 1 to T − 1 do
predict X̃t(γ

t) =
∑k+m
i=1 γi∇dXt−i+

∑d−1
i=0 ∇iXt−1;

receive Xt and incur loss `mt (γt);
Let ∇t = ∇`mt (γt);
Set γt+1 ←

∏
K(γt − 1

η∇t);
end for

Main Theoretical Results
We now present our main theoretical results of analyzing the
algorithms. We first discuss some necessary assumptions.
1. The coefficients βi satisfy that a q-th order difference e-

quation with coefficients |β1|, |β2|, . . . , |βq| is a stationary
process (Hamilton 1994); and

2. The noise terms are stochastically and independently
generated, which satisfy E[|εt|] < Mmax < ∞ and
E[`t(Xt, Xt − εt)] <∞; and

3. The loss function `t is Lipshitz continuous for some Lip-
shitz constant L > 0; and

4. The coefficients αi satisfy |αi| < c for some c ∈ R.
The following theorem presents our main theoretical result
for the proposed ARIMA-ONS in Algorithm 1, which guar-
antees an O

(
(log(q) + log(T )) log T

)
regret bound.

Theorem 1. Let k, q ≥ 1, and set A0 = εIm+k, ε =
1

η2D2 , η = 1
2 min{4GD,λ}. Then, for any sequence

{Xt}Tt=1 that satisfies the above assumptions, the online se-
quence {γt}Tt=1 generated by Algorithm 1 guarantees

T∑
t=1

`mt (γt)−min
α,β

T∑
t=1

E[ft(α, β)]

=O((GD +
1

λ
) log T ) = O((log(q) + log(T )) log T ).

Proof. Step 1: Relying on the fact that the loss functions
{`mt }Tt=1 are λ-exp-concave, we can guarantee that

T∑
t=1

`mt (γt)−min
γ

T∑
t=1

`mt (γ)

=O((GD +
1

λ
) log T ) = O((m+ k +

1

λ
) log T )

using the ONS result in (Hazan, Agarwal, and Kale 2007).
Step 2: ∇dXt could be regarded as an ARMA(k, q), an

ARMA(k, q) is equivalent to an AR(∞). Thus, we recur-
sively define ∇dX∞t (α, β) by using the entire past history

∇dX∞t (α, β)

=

k∑
i=1

αi∇dXt−i +

q∑
i=1

βi(∇dXt−i −∇dX∞t−i(α, β))

and

X∞t (α, β) = ∇dX∞t (α, β) +

d−1∑
i=1

∇iXt−1

with initial condition ∇dX∞1 (α, β) = ∇dX1. We then de-
note by

f∞t (α, β) = `t(Xt, X
∞
t (α, β)), (5)

the loss suffered by the prediction X∞t (α, β) at iter-
ation t. It follows that ∇dX∞t (α, β) is of the form
∇dX∞t (α, β) =

∑t−1
i=1 ci(α, β)∇dXt−i where ci(α, β)

represent some weight function. The motivation behind the
definition of f∞t follows from the idea to replace ft with
a loss function that fits the full information online opti-
mization model. Instead of using the entire past history to
make prediction, we consider a fixed-length history. We set
m ∈ N, and define

∇dXm
t (α, β)

=

k∑
i=1

αi∇dXt−i +

q∑
i=1

βi(∇dXt−i −∇dXm−i
t−i (α, β))

and

Xm
t (α, β) = ∇dXm

t (α, β) +

d−1∑
i=1

∇iXt−1,

with initial condition Xm
t (α, β) = Xt for all t and m ≤ 0.

We then denote by

fmt (α, β) = `t(Xt, X
m
t (α, β)), (6)

the loss suffered by the prediction Xm
t (α, β) at iteration

t. Since it is easier to generate predictions using only the
last (m + k) observations, and the distance between the
loss function is relatively small. Now, let us denote by
(α?, β?) = argminα,β

∑T
t=1 E[ft(α, β)] the best ARIMA

model coefficient in hindsight for predicting the observation
{Xt}Tt=1. Then, from Lemma 1, stated and proven below,
we have that

min
γ

T∑
t=1

`mt (γ) ≤
T∑
t=1

fmt (α?, β?),

and it follows that
T∑
t=1

`mt (γt)−
T∑
t=1

fmt (α?, β?) = O((GD +
1

λ
) log T ).

From Lemma 3 we know that

|
T∑
t=1

E[f∞t (α?, β?)]−
T∑
t=1

E[fmt (α?, β?)]| = O(1)

for m = logλmin
((TLMmaxq)

−1), which implies that

T∑
t=1

`mt (γt)−
T∑
t=1

E[f∞t (α?, β?)]

=O((m+ k +
1

λ
) log T ).

Finally, from Lemma 4 below we know that

|
T∑
t=1

E[f∞t (α?, β?)]−
T∑
t=1

E[ft(α
?, β?)]| = O(1)



and thus
T∑
t=1

`mt (γt)−
T∑
t=1

E[ft(α
?, β?)]

=O((GD +
1

λ
) log T ) = O((log(q) + log(T )) log T ).

In the following, we will give several important lemmas
that are critical to obtaining the bounds as used in the above
proof. Due to space limitation, the detailed proofs of Lemma
1, Lemma 3 and Lemma 4 are given in the supplementary
file 1. In our analysis, we adopt difference equation tech-
niques and use a recursive formulation of ARIMA model to
eliminate the effect of noise terms and degree of differenc-
ing. Lemma 3 and Lemma 4 prove that if we take a length
of order log(q) + log(T ), the distance between the new loss
function and the original one is small in expectation.
Lemma 1. According to Eq. 4 and 6. From any time series
sequence satisfies the assumption above, it holds that

min
γ

T∑
t=1

`mt (γ) ≤
T∑
t=1

fmt (α?, β?).

Lemma 2. Given assumption 1 that a q-th order differ-
ence equation with coefficients |β1| · · · , |βq| and observa-
tions {Xt}Tt=−(q−1) is a stationary process, λ1, · · · , λq are
the q roots of this AR characteristic equation. Let we set
λmin = {|λ1|, · · · , |λq|}, it holds that

Xt ≤ λtmin(X0 +X1 + · · ·+X−(q−1))

Proof. We rewrite this q-th order difference equation in a
scalarXt as a first order difference equation in a vector style.
Define the initial vector ψ−1 = (X−1, X−2, . . . , X−q)

>,
and a (q × q)> matrix F by

F =


β1 β2 β3 · · · βq−1 βq
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . . · · ·

...
...

0 0 0 · · · 1 0

 .
The i-th row matrix F is denoted by Fi·. Thus, we can get
an alternative representation Xt = Ft+1

1· ψ−1. A stationary
solution to this difference equation exists if and only if the q
roots of the AR characteristic equation each is no more than
1 in absolute value. The eigenvalues of matrix F are equiva-
lent to the q roots of the AR characteristic equation ((Hamil-
ton 1994) gives a detailed proof). For simplicity, we assume
λ1, λ2, · · · , λq are distinct. Thus, there exists a (q × q) ma-
trix T such that F = TΛT−1, where Λ is a (q × q) matrix
with the eigenvalues of F along the principal diagonal and
zeros elsewhere. This enables us to characterize Ft in terms
of the eigenvalues of F as

Ft = TΛT−1 ×TΛT−1 × · · · ×TΛT−1︸ ︷︷ ︸
t terms

= TΛtT−1.

1http://OARIMA.stevenhoi.org

Let us denote by f tij the (i, j)-element of Ft, tij the (i, j)-
element of T, tij the (i, j)-element of T−1. Then, the 1st
row, i-th column element of Ft written out explicitly be-
comes

f t1i = [ti1t
i1]λt1 + . . .+ [tiqt

iq]λtq ≤ λtmin.

Since [ti1t
i1] + [ti2t

i2] + · · · + [tiqt
iq] is equivalent to the

(i, i) element of T · T−1. And T · T−1 is just the (q × q)
identity matrix, which implies that the [tijt

ij ] terms sum to
unity. f t1i could be regarded as a weighted average of each
of the q eigenvalues raised to the t-th power.

Therefore, we have

Xt = Ft+1
1· ψ−1 = f t11X0 + . . .+ f t1qX−(q−1)

≤λtmin(X0 +X−1 + · · ·+X−(q−1)).

Lemma 3. According to Eq. 5 and 6. For any time series
sequence satisfies the assumption above, it holds that

|
T∑
t=1

E[f∞t (α?, β?)]−
T∑
t=1

E[fmt (α?, β?)]| = O(1),

if we choose m = logλmin
((TLMmaxq)

−1).

Lemma 4. According to Eq. 3 and 5. For any time series
sequence satisfies the assumption above, it holds that

|
T∑
t=1

E[f∞t (α?, β?)]−
T∑
t=1

E[ft(α
?, β?)]| = O(1).

For Algorithm 2, we can prove the following theorem:
Theorem 2. Let k, q ≥ 1, and set η = D

G
√
T

. Then, for
any sequence {Xt}Tt=1 satisfying the above assumptions, the
sequence {γt}Tt=1 generated by Algorithm 2 guarantees:

T∑
t=1

`mt (γt)−min
α,β

T∑
t=1

E[ft(α, β)]

=O(GD
√
T ) = O((log(q) + log(T ))

√
T ).

The proof of this theorem is similar to that of Theorem 1,
except using the Online Gradient Descent algorithm (Zinke-
vich 2003) rather than the ONS algorithm.

Remark. In contrast to (Anava et al. 2013), our work has
several key advantages. First of all, we do not restrict the pa-
rameter βi with

∑q
i=1 |βi| < 1 − ε for some ε > 0, which

plays a key role in bounding the approximation error. Their
assumption is a necessary, but not sufficient condition to our
assumption 1. It not only restricts the parameter βi but also
introduces additional new parameter ε. Second, even using a
more general assumption about β, we can obtain a much s-
maller value ofm in the order ofO

(
log(q)+log(T )

)
, which

is much smaller than the result ofm = O(q log(T )) in (Ana-
va et al. 2013). Finally, note that our proof method adopts
difference equation techniques to approximate the original
ARIMA model, which is very different from the analysis
techniques used in (Anava et al. 2013).
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(a) Sanity Check
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(b) Abrupt change of α and β
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(c) Abrupt change of d
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(d) Slowly change of α and β
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(e) American Vehicles
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(f) Dow Jones Industrial Average

Figure 1: Experimental results on six datasets (the results were reported by taking the average results from 20 runs)

Experiments
In this section, we conduct experiments on both synthet-
ic and real data to examine the effectiveness and robust-
ness of our online ARIMA algorithms. We compare both
the proposed ARIMA-OGD and ARIMA-ONS algorithm-
s with the two existing ARMA algorithms (ARMA-OGD
adn ARMA-ONG) proposed in (Anava et al. 2013) based
on online root-mean square error (RMSE). Besides, we also
compare with the standard Yule-Walker estimation method
(Hamilton 1994). Since it is a batch learning method, it u-
tilizes all the previous historical observations to make pre-
diction at each iteration. In light of this, when adapting it in
an online setting, this method takes increasingly long time
as T increases. To evaluate different algorithms, we design
experiments for several settings, in which each experiment
was repeated 20 times to yield stable average results and we
choose parameter m+ k = 10 for all the settings 2.

Setting 1. We generate a stationary time series da-
ta by assuming the ARIMA model using α =
[0.6,−0.5, 0.4,−0.4, 0.3], β = [0.3,−0.2] and d = 1, the
noise terms are normally distributed as N (0, 0.32). As can
be seen in Figure 1(a), ARIMA-ONS algorithm outperforms
the other online algorithms and quickly approaches the op-

2All the datasets and source codes for our experiments can be
found in our webpage http://OARIMA.stevenhoi.org

timum, which verified its theoretical lower regret bound.
Setting 2. We generate a non-stationary time se-

ries data by assuming the ARIMA model with two
different sets of parameters. The first set is α =
[0.6,−0.5, 0.4,−0.4, 0.3], β = [0.3,−0.2], d = 1, and it is
used for generating the first half of the sequence. The second
set is α = [−0.4,−0.5, 0.4, 0.4, 0.1], β = [−0.3, 0.2], d =
1, for generating the second half. The noise terms are dis-
tributed Uni[−0.5, 0.5]. In Figure 1(b), we show the effec-
tiveness of our proposed method in a context when when
parameters α and β abruptly change.

Setting 3. We generate a non-stationary time se-
ries data by assuming the ARIMA model with α =
[0.6,−0.5, 0.4,−0.4, 0.3], β = [0.3,−0.2] but different set-
tings about parameter d. d = 2 for the first stage, d = 1
for the second, and d = 0 for the final one. We also com-
pared different settings of d for ARIMA-ONS-II (d = 2)
and ARIMA-ONS-I (d = 1) algorithms (similar to ARIMA-
OGD-II and ARIMA-OGD-I). In Figure 1(c), we can clear-
ly see that ARMA-ONS outperforms other algorithms at
the first stage due to over-differencing of ARIMA-ONS-I
and ARIMA-ONS-II. At the second stage, ARIMA-ONS-
I outperforms other algorithms, but ARMA-OGD sudden-
ly diverge due to under-differencing. The final stage shows
the superiority of ARIMA-ONS-II method. This experiment
demonstrates that differencing is a key factor to successfully



model observation sequence.
Setting 4. We generate a non-stationary time se-

ries data by assuming the ARIMA model using β =
[0.32,−0.2] and α(t) = [−0.4, 0.5, 0.4, 0.4, 0.1] × ( t

104 ) +

[0.6,−0.4, 0.4,−0.5, 0.4]× (1− t
104 ). In this setting, coeffi-

cients change slowly in time. In Figure 1(d), we can clearly
see the advantage of our proposed method.

Real-world data. We evaluated our proposed method on
some real-world time series data. The first time series data
describes monthly registration of private cars during years
1980-1998. Figure 1(e) shows that all algorithms could un-
cover the pattern behind it. But ARIMA-ONS method sig-
nificantly outperforms others. The second time series data
is daily index of Dow Jones Industrial Average (DJIA) dur-
ing years 1885-1962. The results in Figure 1(f) indicate that
the existence of abrupt change, for which ARIMA-ONS can
significantly better adapt it than others.

Conclusion
This paper proposed a novel online learning method with
the ARIMA model for time series prediction. We formulat-
ed online ARIMA learning as a task of full information on-
line optimization task without noise terms, and theoretically
proved that our method attains a sublinear regret bound a-
gainst the best fixed ARIMA model in hindsight. Moreover,
we empirically compared our algorithms with two recent on-
line ARMA algorithms, in which the promising results on
both synthetic data and real data validate that our new algo-
rithms are effective and promising for time series prediction.
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