LIBSOL: A Library for Scalable Online Learning Algorithms

July 26, 2016

Abstract

LIBSOL is an open-source library for scalable online learning with high-dimensional
data. The library provides a family of regular and sparse online learning algorithms
for large-scale binary and multi-class classification tasks with high efficiency, scal-
ability, portability, and extensibility. We provide easy-to-use command-line tools,
python wrappers and library calls for users and developers, and comprehensive doc-
uments for both beginners and advanced users. LIBSOL is not only a machine
learning toolbox, but also a comprehensive experimental platform for online learn-
ing research. Experiments demonstrate that LIBSOL is highly efficient and scalable
for large-scale learning with high-dimensional data.

Contents

1

Introduction

1.1 Online Learning For Binary Linear Classification
1.2 Online Learning For Multi-Class Linear Classification
1.3 Summary of Main Algorithms
1.4 Main Features e
Installation

2.1 Gettingthecode
2.2 Installation on Linux/Unix/MacOS
2.3 Installon Windows
2.4 Install Python Wrappers
Command Line Tools

3.1 Data Formats and Preprocessing Tools
3.2 Training Tool
3.3 Test Tool e
3.4 Python Wrapper
Library Call

4.1 [Initialization of IO L oo
4.2 Initialization of Model L
4.3 Training & Testing
4.4 Finalization
4.5 Use Library on Windows Visual Studio.
4.6 Use Library on Linux/Unix
Design & Extension of the Library

5.1 How to Add New Algorithms
5.2 Model e
5.3 Loss Function
5.4 Datalter L
5.5 Examples to add new algorithms00

10
10
10
13
14

15
15
15
16
16
16
17

1 Introduction

In many big data applications, data is large not only in sample size, but also in feature/di-
mension size, e.g., web-scale text classification with millions of dimensions. Traditional
batch learning algorithms fall short in low efficiency and poor scalability, e.g., high mem-
ory consumption and expensive re-training cost for new training data. Online learning
represents a family of efficient and scalable algorithms that sequentially learn one exam-
ple at a time. Some existing toolbox, e.g., LIBOL [9], allows researchers in academia
to benchmark different online learning algorithms, but it was not designed for practical
developers to tackle online learning with large-scale high-dimensional data in industry.

In this work, we develop LIBSOL as an easy-to-use scalable online learning toolbox
for large-scale binary and multi-class classification tasks. It includes a family of ordinary
and sparse online learning algorithms, and is highly efficient and scalable for processing
high-dimensional data by using (i) parallel threads for both loading and learning the
data, and (ii) specially designed data structure for high-dimensional data. The library
is implemented in standard C++ with the cross platform ability and there is no depen-
dency on other libraries. To facilitate developing new algorithms, the library is carefully
designed and documented with high extensibility. We also provide python wrappers
to facilitate experiments and library calls for advanced users. LIBSOL is available at
http://1libsol.stevenhoi.org.

1.1 Online Learning For Binary Linear Classification

Online learning operates sequentially to process one example at a time. Without loss
of generality, we first investigate the problem of online feature selection for binary clas-
sification tasks. We will extend the solution to multi-class settings in the next section.
Consider {(x¢,)|t € [1,T]} be a sequence of training data examples, where x; € RY is
a d-dimensional vector, y; € {+1,—1}. As Algorithm 1 shows, at each time step ¢, the
learner receives an incoming example x; and then predicts its class label 9;:

G = sgn(wi - X)

Afterward, the true label y; is revealed and the learner suffers a loss I(y:, 9;), For example,
the hinge loss and logistic loss are commonly used for binary classification:

) max(0,1 —y; - §;) Hinge loss
le(y, Gt) = i .
log (1 + e~ ¥r9) Logistic Loss
In real applications, the data dimension d can be very large. To learn a compact
model with only meaningful features, many works have been conducted as called sparse
online learning. The learner suffers a regularization term to induce sparsity for the
learned model w, which is L1 in most cases.

max(0,1 — vy - §¢) + Al|lwe][1 Hinge loss
log (1 4 e~ Y9t) 4+ X||wy1 Logistic Loss

Ie(ys,) = {

At the end of each learning step, the learner decides when and how to update the
model. The update function is often dependent on gradient of the weights w with respect

to loss. gy = g—‘f‘;.

Algorithm 1: LIBSOL: Online Learning Framework for Linear Classification

1 Initialize: w1 = 0;
2 for t in {1,..., T} do
Receive x; € R%, predict §j;, receive true label y;

3
4 Suffer loss 1t (y, 9¢);

5 if 1+ (yt, y) then

6 ‘ Wit1 < update(wy);
7 end

8 end

1.2 Online Learning For Multi-Class Linear Classification

In the multi-class setting, each training example is associated with a label y € {0,1,...,C—
1} for C classes. We adopt the one-vs-the-rest strategy to extend the binary online learn-
ing algorithm to the multi-class setting. We introduce a new label-dependent feature,

Y(x,4) =[0T,... . x, ... 01T,
where only the i-th position 1 (x, i) is x and the others are 0, (0,x € R?). At each step,

the classifier receives a new example x; and predicts the label

U = argfnlax wy - h(x,0), w; € RPC
i=0
The loss function is as follows:
. max(0,1 —wy - Atyy) Hinge loss
Le(ye, Gt) = —wi-Aty) _
log (1 + e~ We2a¥t)) Logistic Loss,
where At is dependent on the multi-class updating strategy.
For max-score multi-class update,

Aty = p(x, 1) — w<xt,ar§0’fm;axwt p(x,1) (1)
1=0,17Y¢

For uniform multi-class update, let

Ey = {i#ye:pe-0(xe,9) > py - (X6, 91) }-

We have
—1/|E| i€ E;
Apy = B g (%4, 1), api =41 if i=y (2)
0 otherwise

1.3 Summary of Main Algorithms

The goal of our work is to implement most state-of-the-art online learning algorithms to
facilitate research and application purposes on the real world large-scale high dimensional
data. Especially, we include sparse online learning algorithms which can effectively learn
important features from the high dimensional real world data [10]. We provide algorithms
for both binary and multi-class problems. These algorithms can also be classified into
first order algorithms [12] and second order algorithms [4] from the model’s perspective.
The implemented algorithms are listed in table 1.

Type Methodology Algorithm Description
Perceptron [11] The Perceptron Algorithm
OGD [13] Online Gradient Descent
First Order PA 2] Passive Aggressive Algorithms
ALMA [g] Approximate Large Margin Algorithm
Online RDA [12] Regularized Dual Averaging
Learning SOP [1] Second-Order Perceptron
CW [5] Confidence Weighted Learning
Second Order ECCW [3 Exactly Convex Confidence Weighted Learning
AROW [4 Adaptive Regularized Online Learning
Ada-FOBOS [6] Adaptive Gradient Descent
Ada-RDA [6] Adaptive Regularized Dual Averaging
STG [10] Sparse Online Learning via Truncated Gradient
Sparse First Order FOBOS-L1 [7] 11 Regularized Forward Backward Splitting
Online RDA-L1 [12] Mixed 11/135 Regularized Dual Averaging
Learning ERDA-L1 [12] Enhanced [1/13 Regularized Dual Averaging
Second Order Ada-FOBOS-L1 [6] | Ada-FOBOS with [1 regularization
Ada-RDA-L1 [6] Ada-RDA with [1 regularization

Table 1: Summary of the implemented online learning algorithms in LIBSOL.

1.4 Main Features

The whole package is designed for high efficiency, scalability, portability, and extensibility.

e Efficiency: it is implemented in C++ and optimized to reduce time and memory

cost.

e Scalability: Data samples are stored in a sparse structure. All operations are

—_ =

— O © 00 O Ui Wi

optimized around the sparse data structure.

Portability: All the codes follow the C++11 standard, and there is no dependency
on external libraries. We use “cmake” to organize the project so that users on
different platforms can build the library easily. LIBSOL thus can run on almost
every platform.

Extensibility: (i) the library is written in a modular way, including PARIO(for
PARallel 10), Loss, and Model. User can extend it by inheriting the base classes
of these modules and implementing the corresponding interfaces; (ii) We try to
relieve the pain of coding in C++ so that users can implement algorithms in a
“Matlab” style. The code snippet in Figure 1 shows an example to implement the
core function of the “ALMA” algorithm.

Vector<float > w; //weight vector
void Iterate (SVector<float> x, int y) {
float predict = dotmul(w, x); //predict label with dot product
float loss = max(0, 1 — y x predict); //hinge loss
if (loss > 0) {
//non—zero loss, update the model
w=w+ eta * y x x; //eta is the learning rate
float w_norm = Norm2(w); //calculate the L2 norm of w
if (wmorm > 1) w /= w_norm;

}

Code 1: Compact implementation of the core function of “ALMA” algorithm in LIBSOL.

1 | Vector<float> w; //weight vector

2 | void Iterate(SVector<float> x, int y) {

3 //predict label with dot product

4 float predict = 0;

5 for (int i = 0; i < x.size(); ++i){

6 predict += w[x.index(i)] * x.value(i);
7 }

8 float loss = max(0, 1 — y x predict); //hinge loss
9 if (loss > 0) {

10 //non—zero loss, update the model

11 //eta is the learning rate

12 for (int i = 0; i < x.size(); ++i) {
13 w[x.index(1)] += eta * y x x.value(i);
14 }

15 //calculate the L2 norm of w

16 float w_norm = O0;

17 for (int i = 0; i < x.size(); ++i) {
18 w_norm += x.value(i) * x.value(i);
19 }

20 w_norm = sqrtf(w_norm);

21 if (wmorm > 1) {

22 for (int i = 0; i < w.dim(); ++i){
23 w[i] /= w.norm;

24

25 }

26 }

27 |}

Code 2: Traditional “C++"* style counterpart implementation of the above algorithm.

It’s obvious that the traditional implementation is tedious. It’s also much harder for
readers to understand the code. What’s more, users have to pay much more effort with
much larger risk to make mistakes when coding in the traditional implementation.

2 Installation

LIBSOL features a very simple installation procedure. The project is managed by C-
Make. There exists a CMakeLists.txt in the root directory of LIBSOL. Note that all
the following are tested on “CMake 2.8”. Lower versions of cmake may work, but are
not ensured.

2.1 Getting the code

The latest version of LIBSOL is always available via “github” by invoking one of the
following:

For the traditional ssh—based Git interaction:

$ git clone git://github.com/LIBOL/LIBSOL. git

For HITTP-based Git interaction
$ git clone https://github.com/LIBOL/LIBSOL. git

2.2 Installation on Linux/Unix/MacOS

The following steps have been tested for Ubuntu 14.04, Centos 6.6 (with “devtoolset-
2” installed for the latter one), and OS X 10.10, but should work with other Unix like
distributions as well, as long as it provides a “C++11" compiler.

2.2.1 Required Packages
e g++(>4.8.2) or clang++(> 3.3);
e CMake 2.8 or higher;

e Python 2.7 (required for python wrappers, otherwise optional)

2.2.2 Build from source

1. Navigate to the root directory of LIBSOL and create a temporary directory to put
the generated project files, as well the object files and output binaries.

$ cd LIBSOL && mkdir build && cd build

2. Generate and build the project files.

$ cmake ..
$ make —j
$ make install

3. For Xcode users, the command is:
$ cmake —G” Xcode”

By default, LIBSOL will be installed in the directory “<LIBSOL> /dist”. If you want
to change the installation directory, set the “PREFIX” variable when using “cmake”.

$ cmake —DPREFIX=/usr/local

2.3

Install on Windows

The following steps have been tested on Visual Studio 2013 and Visual Studio 2015.
Lower versions of Visual Studio do not provide full support of C+411 features.

2.3.1 Required Packages
e Visual Studio 2013, 2015, or higher

e CMake 2.8 or higher

e Python 2.7 (required if you want to use the python wrappers)

2.3.2 Build from source

1.

Navigate to the root directory of LIBSOL and create a temporary directory to put
the generated project files, as well the object files and output binaries. Then follow
either Step 2 or Step 3.

Install with CMake GUI.

(a) Open cmake-gui.exe, set “where is the source code” and “where to build
the binaries”.

A CMake 3.5.0-rc3 - Dyfwerk/LIBSOL/build — O >
File Tools Options Help

Where is the source code: |D:||’work,|'LIBSDL | Browse Source...

Where to build the binaries: | D fwork/LIBSOL fbuild w | Browse Build. ..

(b) Click Configure and select comniler.
Specify the generator for this project

Visual Studio 14 2015 Wing4 ~

Visual Studio 14 2015 ~
Visual Studio 14 2015 ARM

Visual Studio 12 2013

Visual Studio 12 2013 ARM

Visual Studio 12 2013 Wina4

Visual Studio 11 2012

Visual Studio 11 2012 ARM

Visual Studio 11 2012 Wing4

Visual Studio 10 2010 A
(T Spedty opgons Tar oross-compiling

(c¢) After finish configuration. click Generate.
| Configure | | Generate | Current Generator: Visual Studio 14 2015 Wing4

T 10T (Releade] o/HAD 70z /Ubz 7O NOEEUE
€ flags (Debug):/D DEBRUZ /MDd4 /Z2i /Cb0O /04 SRICL

C++:
Ct++ Compiler:C:/Program Files (x8&) /Microsoft Visual Studioc 14_.0/7
C++ flags: DWINZZ /D WINDOWS /W3 /GR /EHsc -DUSE_WIN_THREAD fwd
C++ flags (Release) :/MD /702 f0bZ /D NDEBUG
C++ flags (Debug) :/D DEBUG /MDd fZi /0b0 /0d SRIC1
Linker flags (Release):/INCREMENTAL:NO
Linker flags (Debug):/debug /INCREMENIAL
Configuring done v

< >

od LIBSOL - Microsoft Visual Studio

D) LIBSOL - Microsoft Visual Stucio

file Edit View Project Buld Debug Team Took Test Amsl L b e project Build Debug Teom Tools Test Amaly
S o . - .
E ii] [y Debug 64 A E Debug | x64
Solution Explorer 2 B Solution Explorer > I x
@ o-s#m £ @& o--a@m gl
Search Solution Explorer (Ctrl+;) P- Search Solution Explorer (Ctrl+) P~
=gl Solution ‘LIBSOL" (22 projects) =fa] Solution 'LIBSOL' (22 projects)
4 CMakePredefinedTargets 4 CMakePredefinedTargets
3 test » INSTALL -
4 &l tools b offy] ZERO_CHECK ks Build
b o] analyze b test Rebuild
b Pl concat 4 tools Clean
b of] converter b e[analyze e »
b ofg] Isolc b < concat
b Pl Isol_test b o] converter B '
b P Isol_train b oF] lsolc Project Only »
b o[shuffle b o] Isol_test Retarget SDK Version
b of split b e[Isol_train
b i ALL_BUILD = b <] shuffle e
> F o I;.,,;_Bmld b o] split B New Solution Explorer View
Rebuild | » =[] ALL_BUILD Build Dependencies »
Clean b =[] Isol Add »
View »

4.

B>

Class Wizard... Ctrl+Shift+X

(d) Open LIBSOL.sln, Rebuild the ALL_BUILD project and then build the

INSTALL project.

3. Install from command line. Before this step, you should make sure that cmake is
in the environment path or set environment path manually as step (c) shows.

(a)
(b)

Search cmd in Start Menu and open it.

Navigate to the root directory of LIBSOL and create a temporary directory

to put the generated project files, as well the object files and output binaries.

$ cd LIBSOL && mkdir build && cd build

$ set path=<path_to_cmake>;%path%

If cmake is not in environment path, add by executing the following command:

Generate Visual Studio Projects. Example code for Visual Studio 2013, 2015

and their 64-bit versions are as the following shows:

Generate Visual Studio 2013 Projects
cmake —G ‘‘Visual Studio 12 20137’
Generate 64—bit Visual Studio 2013 Projects

cmake -G
Generate Visual Studio 2015
cmake -G ‘‘Visual Studio 14 2015’
Generate 64—bit Visual
cmake -G

A Ik Ik vk ok

‘“Visual Studio 12 2013 Win64"’’

Projects

Studio 2015 Projects
‘“Visual Studio 14 2015 Win64 "’

(e) Open LIBSOL.sln, Rebuild ALL_BUILD project and then build INSTAL-

L project.

2.4 Install Python Wrappers

To install python wrappers:

$ cd LIBSOL/python && pip install —r requirements.txt

3 Command Line Tools

LIBSOL provides a set of useful command line tools related to data processing and model
training/testing.

3.1 Data Formats and Preprocessing Tools

Data formats supported by this software package are “svmlight” (commonly used in
LIBSVM and LIBLINEAR), “csv”, and a binary format defined by ourselves. Labels
and features in data files should all be numeric.

1. The Binary Format. The binary format is for fast loading and processing. It is
used to cache datasets, like in cross-validation procedures. Each sample in binary
format is comprised of the following items in sequence:

e label: sizeof(label_t), label_t is int32_t by default;

e feature number: sizeof(size_t);

length of compressed index: sizeoof(size-t);
e compressed index: sizeof(char) * length of compressed index;
e features: sizeof(float) * feature number;
2. Data Preprocessing Tools The library provides some tools to help users pre-

process datasets, like analyzing, splitting, shuffling , etc. Note that the tools sup-
port the data formats as mentioned above.

e analyze: analyze the data number, feature number, feature dimension, nonze-
ro feature number, class number, feature sparsity of datasets.

e concat: concatenate several data files into one.
e converter: convert data from one format to another.
e shuffle: shuffle the order of data samples.

e split: split one data file into several parts.
The detailed input parameters for the tools can be obtained by running the tool
without options or with “-h” or “~help” option.
3.2 Training Tool

The training tool is libsol_train. Running libsol_train without any arguments or with
“~help/-h” will produce a message which briefly explains each argument.
The command to call libsol_train is:

$ libsol_train [options] ... train_file [model_file]
Options include “general options”, “io options” and “model options”.

1. General Options

—h arg : show all help information;
—s arg : show list of information specified by arg.

10

The “-8” option is to help users know what the library can do (what kind of
algorithms are implemented, what kind of data formats are supported, what kind
of loss functions are implemented, etc.) without checking the code. The available
arguments include “reader”, “writer”, “model”, and “loss”. For example, running
with “model” will show users the available algorithms as follows:

$ libsol_train —s model
[output is:]

ada—fobos—11: Adaptive Subgradient FOBOS with 11 regularization
ada—fobos: Adaptive Subgradient FOBOS

ada—rda—11: Adaptive Subgradient RDA with 11 regularization
ada—rda: Adaptive Subgradient RDA

alma2: Approximate Large Margin Algorithm with norm 2

arow : Adaptive Regularization of Weight Vectors

cwW: confidence weighted online learning

eccw : exact convex confidence weighted online learning

erda—11: mixed 11-1272 enhanced regularized dual averaging
fobos—11: Forward Backward Splitting 11 regularization
ogd: Online Gradient Descent

pal: Online Passive Aggressive—1

pa2: Online Passive Aggressive —2

pa: Online Passive Aggressive

perceptron: perceptron algorithm

rda—11: mixed 11-12"2 regularized dual averaging

rda: 1272 regularized dual averaging

sop: second order perceptron

stg: Sparse Online Learning via Truncated Gradient

And Running with “reader” will show users the data readers for all support data
formats:

$ libsol_train —s reader

bin: binary format data reader
CcsvV: csv format data reader
svm : libsvim format data reader

. I0 Options

—f arg : dataset format (’svm’[default], ’bin’, or ’csv’)

—c arg : nubmer of classes (default=2)

—-p arg : number of passes to go through the data (default=1).
—d arg : dimension of the data.

Note that the IO options are not required. For the “-d” option, if not specified,
the tool will learn the dimension by itself, with a little more memory cost.

. Model Options

—a arg : learning algorithm to use (see ‘‘General Options’’)
—-m arg : path to pre—trained model for finetuning
—params arg: parameters for algorithms in the format

‘‘param=val ; param2=val2 ;... "’

Some usefule parameters include:

loss=|[string]

11

bool : 1 if wrong predict, 0 if correct

hinge : hinge loss

maxscore—bool : multi—class max—score bool loss
maxscore—hinge: multi—class max—score hinge loss
uniform—bool : multi—class uniform bool loss
uniform—hinge : multi—class uniform hinge loss

lambda=|[float]
Regularization parameter for sparse online learning algorithms
norm=/|string]

Normalize the data samples, the supported normalization method include:

11 : divide each feature by L1 norm
12 : divide each feature by L2 norm
eta=|[float]

Learning rate for online algorithms.

For the OGD algorthm, learning rate is as the following equation shows:

"o
= 3
"= o+ 1y 3)
eta arg : initial learning rate
power_t arg : power t of decaying learning rate
t arg : initial iteration number

So the options can be:

$ libsol_train —a ogd —params "eta=0.1;power_t=1;t=100" data_path

Table 2 shows the algorithms and their correspondent parameters.

We provide an example to show how to use libsol_train and explain the details of
how libsol_train works. The dataset we use will be “ala” provided in the “data” folder.

The command for training wit default algorithm is as the following shows.

$ libsol_train data/ala

Output of the above command will be:

Model Information:

{

Pclf . num” : 1,

"cls.num” 2,

7loss” : "hinge”,

"model” : "ogd”,

"norm” : 0,

7online” : {
"bias_eta” : 0,
7dim” 1,
Veta” 1,
"lazy_update” : ”false”,
"power_t” : 0.5,

12

}
}
Training Process....
Iterate No. Error Rate Update No.
2 0.500000 1
4 0.250000 1
8 0.125000 1
16 0.187500 3
32 0.125000 8
64 0.218750 19
128 0.179688 41
256 0.218750 95
512 0.210938 179
1024 0.205078 381
1605 0.187539 567

training accuracy: 0.8125
training time: 0.031 seconds
model sparsity: 15.1260%

Illustrations:

Model Information: Class number, classifier number, including specified algo-
rithm, and detailed parameters as specified by “—params” option above.

Trainin Process: The iteration information: the first column is number of pro-
cessed data samples; the second column is the training error rate; the third column
is number of updated times of the classifiers.

Summary: The final training accuracy, time cost, and model sparsity.

By default, LIBSOL use the “OGD” algorithm to learn a model. If users want

to try another algorithm (“AROW” for example) and save the learnt model to a file
(“arow.model”):

$ libsol_train —a arow data/ala arow.model

Each algorithm may have its own parameters as illustrated in “Model Options”. The

following command changes the default value of parameter “r” to “2.0”:

$ libsol_train —a arow —params r=2.0 data/ala arow.model

In some cases we want to finetune from a pre-trained model, the command is:

3.3

$ libsol_train —m arow.model data/ala arow2.model

Test Tool

The test tool is libsol_test. The test command is:

$ libsol_test model_file data_file [predict_file]

model_file : model trained by libsol_train
data_file . path to test data
predict_file : path to save the prediction results(optional)

13

Table 2: Algorithm specific Parameters

Algorithm | Parameters | Meaning
eta learning rate
Ada-FOBOS delta parameter to ensure positive-definite property of the
adaptive weighting matrix
eta learning rate
Ada-RDA delta parameter to ensure positive-definite property of the
adaptive weighting matrix
ALMA alpha ﬁna'l margin parameter (1 — a)7ys
C typically set to v/2.
AROW r parameter of passive-aggressive update trade-off
CW a initial confidence
phi threshold of inverse normal distribution of the
threshold-probability.
ECCW a initial conﬁden(.:e -
phi threshold of inverse normal distribution of the
threshold-probability.
0GD eta learning rate . .
power_t power to of decaying learning rate
PA1 C passive-aggressive trade-off parameter
PA2 C passive-aggressive trade-off parameter
RDA sigma coefficient of the proximal function
ERDA sigma coefficient of the proximal function
rou parameter for 11 penality in proximal function
SOP a parameter for positive definite normalization matrix

For exmaple, We can test with the learned model:

$ libsol_test arow.model data/ala.t predict.txt
test accuracy: 0.8437
test time: 0.016 seconds

3.4 Python Wrapper

The library provides python wrappers for users. The similar command line toos are
“libsol_train.py” and “libsol_test.py”. The usage are almost exactly the same as
“libsol_train” and “libsol_test”, except that “libsol_train.py” provides the cross
validation function. For example, if users want to do a 5-fold GridSearch Cross Valida-
tion in the range [275,274, ..., 2% 25] for parameter “r” of “AROW”, the command and
output will be:

$ python python/libsol_train.py —a arow —cv r=0.03125:2:32 —f 5 \
data/ala arow.model
cross validation parameters: [(’r’, 2.0)]

For advanced users, they can import Model from lsol_core to their own python
scripts. The Model class provides the train and test functions for embedded usage of
LBISOL.

14

4 Library Call

LIBSOL provides a dynamic library named “lsol.d1l” on Windows or “liblsol.so” on
Unix like systems. Interfaces of the library are comprised of three parts: initialization,
training/testing, and finalization.

4.1 Initialization of IO
Initialization of IO means to create a data iterator. The API is:

void* lsol_CreateDatalter (int batch_size, int buf_size);

e batch_size: the number of data samples in each mini-batch while loading data;

e buf_size: number of mini-batches to cache while loading data.

With the created data iterator, users can load one or more data sequentially. The API
is:

void* lsol_-LoadData(void+* data_iter , const charx path, const charx
format , int pass_num);

data_iter: the created data iterator;

path: path the training data;

Y

format: format of the data (’svm’, ’csv’, ’bin’, etc.);

e pass_num: number of passes to go through the data.
Note: 1sol_LoadData can be called multiple times to add multiple training data. The
data will be processed sequentially as they are added to the data iterator. This is in

accordance with the target of online learning, where the data distribution may change
over time.

4.2 Initialization of Model

Initialization of Model means to create a model instance. There are two ways: train from
scratch and finetune from an existing model.

1. Train from Scratch

Create a new clean model for training from scratch:

void* lsol_CreateModel (const char* name, int class_num);

e name: name of the algorithm to be used;

e class_num: number of classes to train.

2. Finetune from Existing Model
Load an existing model for continuous training:

void* lsol_RestorModel (const charx model_path);

e model_path: path to existing model

15

3. Set Model Parameter

void* lsol_SetModelParameter (void+* model, const chars param_name,
const charx param_val);

e model: the model instance;
e param_name: name of the parameter ('loss’, eta’, etc.);

e param _val: value string of the parameter.

4.3 Training & Testing
The API to train a model is:

void lsol_Train (void* model, void* data_iter);

e model: the model instance;
e data_iter: data iterator to be used for training.

The API to test a model is:

void lsol_Test (void* model, void* data_iter , const charx
output_path);

e model: the trained model instance;
e data_iter: data iterator to be used for testing.

e output_path: path to save the predicted results, if no need to save, set to NULL.

4.4 Finalization
Finalization is to release the initialized resources. The functions are:

void lsol_ReleaseDatalter (void*x data_iter);

//save model to a file

void lsol_SaveModel (void* model, const charx model_path);
void lsol_ReleaseModel (void#** model);

4.5 Use Library on Windows Visual Studio

LIBSOL can only be linked as a dynamic library to support the reflection of class names
to class constructors. It is named as “lsol.dll” on Windows. Interface of the library is in
“lsol/c_api.h”. Suppose LIBSOL is installed into “<LIBSOL>/dist”. The following
shows an example to link LIBSOL to another project in Visual Studio 2015.

1. Create an empty Win32 C/C++ project.

2. Add include path and library path to the created project. Properties — Select
All Configurations — VC++ Directories.

3. Add link libraries to the project. Linker — Input — add the library. In
Release mode, add 1sol.lib. In Debug mode, add lsold.lib.

4. Test the program. Add a new source file and use the above APIs to test the library.
The "LIBSOL /tools/Isol_c.cc“ is a good example to use the Library Calls.

16

4.6 Use Library on Linux/Unix

Suppose LIBSOL is installed into “<LIBSOL>/dist”. On linux, users need to set
the include path, library link path, and linked libraries for “gcc/g++/clang/clang++”
compilers.

1. Include path:
—I <LIBSOL>/dist/include
Then include “Isol/c_api.h” in your source files.

2. Link path and library

—L, <LIBSOL>/dist /bin —1lsol

17

5 Design & Extension of the Library

The design principle is to keep the package simple, easy to read and extend. All codes
follow the C++11 standard and need no external libraries. The reason to choose C++
is for feasibility and efficiency in handling large scale high dimensional data. The system
is designed so that machine learning researchers can quickly implement a new algorithm
with a new idea, and compare it with a large family of existing algorithms without
spending much time and efforts in handling large scale data.

In general, LIBSOL is written in a modular way, including PARIO(for PARallel 10,
whose key component is Datalter), Loss, and Model. User can extend it by inher-
iting the base classes of these modules and implementing the corresponding interfaces;
Thus, we hope that LIBSOL is not only a machine learning tool, but also a comprehen-
sive experimental platform for conducting online learning research. Figure 1 shows the

framework of the system.

Create Select Set Parameters

|

Get Data Get Gradient
Datalter Model .
Thread 1

Thread 2 @ 1

DataReader Algorithm List Loss Functions

T e Py
o s ow | ow =l
() e o

l I

{Ada—FOBOSM Ada-RDA J[STG }
Common Utilities

i

AROW

Figure 1: Framework of LIBSOL

5.1 How to Add New Algorithms

A salient property of this library is that it provides a fairly easy-to-use testbed to facilitate
online learning researchers to develop their new algorithms and conduct side-by-side
comparisons with the state-of-the-art algorithms on various datasets with various loss
functions with the minimal efforts. More specifically, adding a new algorithm has to
address three major issues:

e What is the condition for making an update? This is usually equivalent to defining
a proper loss function (e.g., a hinge loss l; = max(0,1 — yy * f;)) such that an update
occurs wherever the loss is nonzero, i.e., (I; > 0). Please check details in Section 5.3.

18

e How to perform the update on the classifier (i.e.,the weight vector w) whenever
the condition is satisfied? For example, Perceptron updates w = w + y; * z;; Please
check details in Section 5.2.

e Are there some parameters in your new algorithm? If so and you want your
algorithm can be serialized to and deserialized from files, you need to do some
parameter setting (SetParameter), model serialization (GetModellnfo, Get-
ModelParam) and deserialization (SetModelParam). Please check details in
Section 5.2.

5.2 Model

Model is about all the learning algorithms. There are several child base classes for
different kind of algorithms.

5.2.1 Model

This is the base class for all algorithms. It implements the main test strategy of algo-
rithms and serialization/deserialization functions. The interfaces include:

e Constructor:

Model(int class_num, const std::string& type);
Here the parameter type indicates whether the algorithm is an online algorithm,
stochastic, or batch algorithm for future extension purposes.

e Parameter Setting[optional:

virtual void SetParameter(const string& name, const string& value);

Fach algorithm may have its own parameters with different names. This interface
allows the new algorithms to parse their parameters easily. The function will throw
an invalid_argument exception if a wrong parameter is set.

e Training Initialization|optional]:
virtual void BeginTrain () ;

Some algorithms may need to do some initialization before training. If so, the
algorithm can overload this function and place the initialization code here.

e Training Finalization|optional|:
virtual void EndTrain();

Some algorithms may need to do some finalization after training. If so, the algorith-
m can overload this function and place the finalization code here. For example, for
sparse online learning algorithms, they need to truncate weights after all iterations
if they used the lazy-update strategy.

e GetModellnfo[optionall:

virtual void GetModellnfo(Json:: Value& root) const;

19

This function is for the serialization of the model to model files. If th new algorithm
contains some hyper-parameters, it should overload this function to serialize the
hyper-parameter to a json object.

o GetModelParameter|optional]:

virtual void GetModelParam (ostream& os) const;

This function is for the serialization of the model to model files. If th new algorithm
contains some other parameters, it should overload this function to serialize the
parameters to an output stream. For example, for second order online learning
algorithm, they often have another matrix about the second order information.
While the base class only know there exists a weight vector, the algorithms should
overload this interface and serialize the second order matrix by themselves.

e SetModelParameter|optionall:
virtual void SetModelParam (istream& os);

This function is for the deserialization of the model from model files (the inverse step
of GetModelParam). Generally, if an algorithm overloads GetModelParam,
it should also overload SetModelParam.

Users may be confused that why they do not need to overload SetModellnfo. The
reason is that new algorithms have already provided the SetParameter interface for
the setting of hyper-parameters. The base class will automatically call this function
during deserialization.

5.2.2 Online Model

This is the base class for all online algorithms. It implements the main training strategy
of online algorithms and defined some shared hyper-parameters or auxiliary parameters
for online learning algorithms. The two interfaces that users may need to take care are:

e Predict in trainingfoptional:
label_t TrainPredict(const DataPoint& dp, float* predicts);

dp is the input data sample. predicts is the output prediction, with equal length to
number of classifiers. The purpose of this interface is that some online algorithms
need to do some calculation before prediction in each iteration, like the second
order perceptron (SOP) algorithm. In other cases, there is no need to overload this
interface.

e Update dimension[optional]:

void update_dim (index_t dim);

For online algorithms, data samples are processed one by one. So the model does
not know the dimension of the whole dataset. When new data sample comes,
this function is called to ensure that the dimension of the model will be updated.
This function should be overloaded in the same case of GetModelParam and
SetModleParam, where extra model parameters exist for algorithms.

20

5.2.3 Online Linear Model

This is the base class for all online linear algorithms. The only required interface here is
the update function, which is the key algorithm for online linear algorithms.

e Update function[required]:

void Update(const DataPoint& dp, const floatx predicts, float loss);

dp is the input data sample. predicts is the prediction on each classes. loss is
the output of loss function.

5.3 Loss Function

At the moment, we provide a base class (purely virtual class) for loss functions and four
inherited classes(BoolLoss, HingeLoss, LogisticLoss, and SquareLoss) for binary classifi-
cation, as well as their max-score and uniform loss functions for multi-class classification.
The interfaces are:

e Loss:

virtual float loss(const DataPoint& dp, float* predicts,
label_t predict_label , int cls_.num);

Get the loss for the current predictions. The first parameter is the data sample.
The second is the prediction on each class. The third is the predicted class label,
and the last one is the number of classes.

e Gradient:

virtual float gradient (const DataPoint& dp, floatx predicts,
label_t predict_label , float* gradient, int cls_.num);

Get the gradient of the loss function at the current data point. Note that we do not
calculate the exact gradient here. The dimension of the fourth parameter gradient
is the number of classifiers. To linear classification problems, the gradients on
different features share a same part. Take Hinge Loss for example:

(@) =1 -y - &

The gradient is:
(W) = —y¥

As a result, we only calculate the shared term —y for the gradients of different
features for efficiency concern. Users need to multiply the correspondent feature
z[i] in the optimization algorithms.

5.4 Datalter

Datalter is in charge of loading and transferring data from disk to models efficiently.
The two major functions are: adding and data reader and providing parsed data.

21

5.4.1 Extension of Data Reader

Adding data reader means Datalter should allow users to add a reader to parse the
source data files. Generally, users just need to specify the following function of Datalter
to add a reader:

int AddReader(const std::string& path, const std::string& dtype,
int pass.num = 1);

e path: path to the data file;
e dtype: type of the data file (“svmn”, “bin”, “csv”);

e pass_num: number of passes to go through the data.

By default, dtype supports “svm”, “bin”, and “csv”. Extension of Data reader is to
implement a reader for a new data type.

The new type of data reader should inherit from the base class DataReader, (in
include/lsol/pario/data-reader.h) and implement the interfaces as follows:

e Open data file:

virtual int Open(const std::string& path, const charx model=‘‘r’");
Open a data file to load data. The function returns Status_OK(0) if everything
is ok.

e Parse data:

virtual int Next(DataPoint& dst_-data);

Parse a new data point from the input source. The parameter is the place to store
the parsed data.

The function returns Status_OK(0) if everything is ok.
¢ Rewind|optional:

For some special data formats like csv, the first line is some meta data. In this
case, Rewind should be inherited and overloaded.

virtual void Rewind () ;

e Close[optional]:

If the new reader needs to allocate some resources, it should overload the Close
function to avoid memory leak.

virtual voidnt Close();

5.5 Examples to add new algorithms

In this page, we use the “Ada-FOBOS” and “Ada-FOBOS-L1” algorithms to show how
to extend the library to add new algorithms.

22

5.5.1 Ada-FOBOS and Ada-FOBOS-L1 Algorithms
The following steps show how Ada-FOBOS and Ada-FOBOS-L1 Algorithms work.

1. Input:

e 7): learning rate
e . parameter to ensure positive-definite property of the adaptive weighting

matrix

2. Procedures:

(a) receive new example x;

(b) predict results:
Yt = Wi Xy

(c) suffer loss I
(d) calculate gradient g; with respect to wy

(e) update the diagonal matrix Hy of the proximal function §(x] Hyx;)
Hy = 6 + diag(Xt_, gigl)
(f) update wy

Ada-FOBOS : w1 =w, — 18t

H;
A
Ada-FOBOS-L1 : w1 = truncate(wy — @7ﬁ>

H; H;

5.5.2 Step by Step Implementation of Ada-FOBOS

1. Loss Function

Ada-FOBOS uses “Hinge Loss” or “Logistic Loss” as the loss function. So we do
not need to write new loss functions.

2. Create File

Since Ada-FOBOS is an online linear algorithm, we first create a new file named
ada_fobos.h in include/lsol/model/olm. In the header, we include the base class
OnlineLinearModel. We need to define the constructor and destructor of the
algorithm.

#include <lsol/model/online_linear_model .h>

class AdaFOBOS: public OnlineLinearModel {
public:
AdaFOBOS(int class_num) ;
virtual ~AdaFOBOS() ;

}s

23

3. Update Function

Then we define the UPDATE function to update the model, which is the key
of the algorithm. Note that OnlineLinearModel will predict on the incoming
example and calculate the loss automatically.

class AdaFOBOS: public OnlineLinearModel {
public:
AdaFOBOS(int class_num);
virtual ~AdaFOBOS() ;

protected :
virtual void Update(const pario::DataPoint& dp, const floatx*
predict , float loss);

};

4. Parameters

The algorithm needs the following parameters:

e eta: learning rate, which is a shared parameter of online methods and is
already defined in OnlineModel. Since Ada-FOBOS uses constant learning
rate, we need to set its value in SetParameter function.

e delta: we need to set its value in SetParameter function. Besides, we
need serialize the parameter in GetModellnfo function. The desiralization
is achieved by SetParameter.

e H: we need to keep the diagonal matrix H; (denoted as a vector since it’s
diagonal) for each class. We need to overload the update_dim to adaptively
update the dimension of H;. Besides, we need to overload GetModelParam
and SetModelParam to serialize and deserialize H;.

class AdaFOBOS: public OnlineLinearModel {
public:
AdaFOBOS(int class_num) ;
virtual ~AdaFOBOS() ;

virtual void SetParameter(const string& name, const string&
value) ;

protected :
virtual void Update(const pario:: DataPoint& dp,
const float* predict, float loss);

virtual void update_dim (index_-t dim);

virtual void GetModellnfo(Json:: Value& root) const;
virtual void GetModelParam (ostream& os) const;
virtual int SetModelParam (istreamé& is);

protected :

float delta_;
math :: Vector<real _t >x H_;

};

5. Implementation

24

(a) Constructor and Destructor
In constructor, we need to allocate the space for H_. In destructor, we need
to free the space of H_.

AdaFOBOS: : AdaFOBOS(int class_num):
OnlineLinearModel (class_.num), delta_(10.f) {
// clf num_ is the actual number of classifiers
// when class number is 2, clf_num_ = 1. Otherwise,
clf num_ = class_.num
this—>H_ = new math:: Vector<real_t >[this—>clf _num_];
for(int i = 0; i < this—>clf_num_; 4++i){
this—>H_[i].resize (this—>dim_);
this—>H_[i] = this—>delta_; //initialize

}

AdaFOBOS:: ~ AdaFOBOS () {
DeleteArray (this—H_);
}

(b) Update Function
We can implement the update function in almost the same way as the algo-
rithm shows in a MATLAB style as follows:

void AdaFOBOS:: Update(const pario:: DataPoint& dp, const floatx
predicts , float loss) {
const auto& x = dp.data();
for (int ¢ = 0; ¢ < this—>clf_num; ++4c){
if (g(c) = 0) continue; //no need to update

// The gradient has already been calculated by the

// parent class OnlineLinearModel, which is g(c) = x.

// Please refer to the documentation for the reason

// The following function update H_. incrementally

// with new coming examples

H_[c] = Sqrt(L2(H_[c] — delta_) + L2(g(c) * x)) +
delta_;

//update bias

H_[c][0] = sqrtf(H_[c][0] — delta_) % (H_[c][0] —
delta_-) + g(c) * g(c)) + delta_;

//update weight vector

w(c) —= eta- x g(c) * x / H_[c];
//update bias
w(c) [0] —= bias_eta() * g(e) / H.[c][0];

}

(c) Parameters
e SetParameter & Update Dimension

void AdaFOBOS:: SetParameter (const stringé& name,
const string& value) {

if (name == 7delta”) {
this—>delta. = stof(value);
Check (delta_>0);

}

else if (name== 7eta”) {

25

this—>eta_. = stof(value);
Check (delta_>0);

else {
OnlineLinearModel :: SetParameter (name, value);
}

}

void AdaFOBOS::update_dim (index_t dim) {
if (dim > this—>dim.) {
real_t delta = this—>delta_;
for (int ¢ = 0; ¢ < this—>clf_num_; 4++c){
this—>H_[c].resize(dim); //resize to the new dim
// we set the new value of the added dimension
// (from dim_. to dim) to delta
this—>H_[c]. slice_op ([delta](real_t& val) {
val = delta;
}

, this—>dim_);

}

OnlineLinearModel :: update_dim (dim) ;

}

e Serialization & Deserialization

void AdaFOBOS:: GetModellnfo (Json :: Value root) {
OnlineLinearModel : : GetModellnfo (root) ;
root ["online” |[7delta”] = this—>delta_;
root [7online” |[7eta”] = this—>eta_;

}

void AdaFOBOS:: GetModelParam (ostream& os) {
OnlineLinearModel : : GetModelParam (os) ;
for (int ¢ = 0; ¢ < this—>clfnum_; +4c) {
os<<"H["<<e<<”]: 7"<<this—H_[c]<<’\n”;
}

}

int AdaFOBOS:: SetModeoParam (istream& is) {
OnlineLinearModel : : SetModelParam (is) ;

string line; //for the header "H[x]”
for (int ¢ = 0; ¢ < this—>clf_num_; ++c) {
is >>line>>this—H_[c]; ;
}
}

return Status_ OK;

e Registration
To make sure that the tool knows we add a new algorithm, we register
the new algorithm

RegisterModel (AdaFOBOS, ”ada—fobos”,
7 Adaptive Subgradient FOBOS”);

26

5.5.3 Step by Step Implementation of Ada-FOBOS-L1

The only difference between Ada-FOBOS-L1 and Ada-FOBOS is the update function.
We can simply add a new parameter A and then modify the Update function as required.

However, truncation of all dimension is not efficient when dimension is high and data
is sparse. So researchers proposed the lazy update scheme. The learner truncates the
weights only when needed, that is:

e when the input data requires that dimension;

e when the learning process finishes, the learner needs to truncate all weights.

The lazy udpate scheme is a common way for many sparse online learning algorithms,
which is implemented as LazyOnlineL1Regularizer in this toolbox.

As a result, the difference between Ada-FOBOS-L1 and Ada-FOBOS now is to trun-
cate weights when predicting on the current example, rather than the Update function.

class AdaFOBOS_L1l: public AdaFOBOS {
public:
AdaFOBOS_L1(int class_.num);

// the learner needs to truncate all weights at the end of training
virtual void EndTrain();
protected :
// the learner needs to truncate weights before prediction
virtual label_t TrainPredict (const pario::DataPoint& dp,
const floatx predict);

protected :
LazyOnlineL1Regularizer 11_;

e
And the implementations:

AdaFOBOS_L1:: AdaFOBOS_L1(int class_num): AdaFOBOS(class_.num) {
this—>regularizer)_ = &l1_;
//tell the parent classes that we have a regularizer

label_t AdaFOBOS_L1:: TrainPredict (const pario:: DataPoint& dp, floatx
predicts) {
const auto& x = dp.data();

real_t t = real_t(cur_.iter_num._ — 1); //current iteration ,
since not updated, minus 1
// truncate the weights
for(int ¢ = 0; ¢ < this—>clfnum_; ++c) {
// the w(c).slice (x)
means that we only need to truncate weights needed by x
// this is a similar operation to numpy
to index part of the elements in array
w(c) = truncate(w(c).slice(x), (eta- x 11_.lambda()) x (t —
11_.last_update_time()) / H_[c]);
//truncate bias
w(c)[0] = truncate(w(c)[0], bias_eta() * 11_.lambda() /
H_[c][0]) ;
}

27

//normal prediction
return OnlineLinearModel :: TrainPredict (dp, predicts);

IE

void
AdaFOBOS_L1:: EndTrain () {
real_t t = cur_iter_.num_;
// truncate all weights
for (int ¢ = 0; ¢ < this—>clf_num_; ++c) {
w(c) = truncate(w(c), (eta. x 11_.lambda()) * (t —
11_.last_update_time()) / H_[c]);
//truncate bias
w(c)[0] = truncate(w(c)[0], bias_eta() * 11_.lambda() /
H_[c][0]);

OnlineLinearModel : : EndTrain () ;
b
RegisterModel

(AdaFOBOS_L1, ”ada—fobos—11",
7 Adaptive Subgradient FOBOS with L1 regularization”);

28

References

1]

2]

[11]

[12]

[13]

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm.
SIAM J. Comput., 34(3):640-668, Mar. 2005.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. The Journal of Machine Learning Research, 7:551-585, 2006.

K. Crammer, M. Dredze, and F. Pereira. Exact convex confidence-weighted learning.
In Advances in Neural Information Processing Systems, pages 345—-352, 2008.

K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors.
Machine Learning, pages 1-33, 2009.

M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification.

In Proceedings of the 25th international conference on Machine learning, pages 264—
271. ACM, 2008.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159,
2011.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward
splitting. The Journal of Machine Learning Research, 10:2899-2934, 2009.

C. Gentile. A new approximate maximal margin classification algorithm. J. Mach.
Learn. Res., 2:213-242, Mar. 2002.

S. C. Hoi, J. Wang, and P. Zhao. Libol: A library for online learning algorithms.
The Journal of Machine Learning Research, 15(1):495-499, 2014.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient.
The Journal of Machine Learning Research, 10:777-801, 2009.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. The Journal of Machine Learning Research, 9999:2543-2596, 2010.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. 2003.

29

