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Abstract

LIBOL is an open-source library for large-scale online classification, which consists
of a large family of efficient and scalable state-of-the-art online learning algorithms
for large-scale online classification tasks. We have offered easy-to-use command-line
tools and examples for users and developers. We also have made comprehensive
documents available for both beginners and advanced users. LIBOL is not only a
machine learning tool, but also a comprehensive experimental platform for conduct-
ing online learning research.
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1 Introduction

Online learning represents an important family of efficient and scalable machine learning
algorithms for large-scale applications. In general, online learning algorithms are fast,
simple, and often make few statistical assumptions, making them applicable to a wide
range of applications. Online learning has been actively studied in several communities,
including machine learning, statistics, and artificial intelligence. Over the past years,
a variety of online learning algorithms have been proposed, but so far there is very
few comprehensive library which includes most of the state-of-the-art algorithms for
researchers to make easy side-by-side comparisons and for developers to explore their
various applications.

In this work, we develop LIBOL as an easy-to-use online learning tool that consists a
large family of existing and recent state-of-the-art online learning algorithms for large-
scale online classification tasks. In contrast to many existing software for large-scale
data classification, LIBOL enjoys significant advantages for massive-scale classification
in the era of big data nowadays, especially in efficiency, scalability, parallelization, and
adaptability. The software is available at http://libol.stevenhoi.org/.

1.1 Suitable Tasks

Currently the implemented toolbox is suitable for online binary classification and multi-
calss classification tasks, which are discussed with more details as follows.

1.1.1 Binary Classification

Online binary classification operates on a sequence of data examples with time stamps.
At each step t, the learner receives an incoming example xt ∈ X in a d-dimensional
vector space, i.e., X = R

d. It first attempts to predict the class label of the incoming
instance,

ŷt = sgn(f(xt;wt)) = sgn(wt · xt) ∈ Y

and Y = {−1,+1} for binary classification tasks. After making the prediction, the true
label yt ∈ Y is revealed, and the learners then computes the loss ℓ(yt, ŷt) based on some
criterion to measure the difference between the learner’s prediction and the revealed true
label yt. Based on the result of the loss, the learner finally decides when and how to
update the classification model at the end of each learning step. The following algorithmic
framework gives an overview of most online learning algorithms 1 for linear classification,
where ∆(wt; (xt, yt)) denotes the update of the classification models. Different online
learning algorithms in general are distinguished in terms of different definitions and
designs of the loss function ℓ(·) and their various updating functions ∆(·).

In particular, this software consists of 16 different online algorithms and their vari-
ants for binary classification, and 13 online algorithms and variants for multiclass clas-
sification. In general, they can be grouped into two major categories: (i) first-order

1Except that SOP in [1] follows a slightly different procedure.
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Algorithm 1: LIBOL: Online Learning Framework for Linear Classification.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sgn(f(xt;wt));
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: ℓ(wt; (xt, yt));
7 if ℓ(wt; (xt, yt)) > 0 then
8 The learner updates the classification model:
9 wt+1 ← wt +∆(wt; (xt, yt));

10 end

11 end

learning [13, 2], and (ii) second-order learning [4, 14, 15]. Examples of online learning
algorithms in the first-order learning category include the following list of classical and
popular algorithms:

• Perceptron: the classical online learning algorithm [13];

• ALMA: Approximate Maximal Margin Classification Algorithm [10];

• ROMMA: the Relaxed Online Maxiumu Margin algorithms [11];

• OGD: the Online Gradient Descent (OGD) algorithms [18];

• PA: Passive Aggressive (PA) algorithms [2], one of state-of-the-art first-order online
learning algorithms;

In recent years, to improve the first-order learning methods, the second-order online
learning algorithms typically assume the weight vector follows a Gaussian distribution
w ∼ N (µµµ,Σ) with mean vector µµµ ∈ R

d and covariance matrix Σ ∈ R
d×d. The model

parameters, including both the mean vector and the covariance matrix are updated in the
online learning process. Example of the second-order online learning algorithms include
the following:

• SOP: the Second-Order Perceptron (SOP) algorithm [1];

• CW: the Confidence-Weighted (CW) learning algorithm [4];

• IELLIP: online learning algorithms by improved ellipsoid method [15];

• AROW: the Adaptive Regularization of Weight Vectors [5];

• NAROW: New variant of Adaptive Regularization [12];

• NHERD: the Normal Herding method via Gaussian Herding [7]

• SCW: the recently proposed Soft Confidence Weighted algorithms [14].

For the details of each of the above algorithms, please refer to the detailed descriptions
in Section 2.
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1.1.2 Multiclass Classification

Similar to online binary classification, online multiclass learning is performed over a
sequence of training examples (x1, y1), . . . , (xT , yT ). Unlike binary classification where
yt ∈ {−1,+1}, in multiclass learning, each class assignment yt ∈ Y = {1, . . . , k}, making
it a more challenging problem. We use ŷt to represent the class label predicted by the
online learning algorithm. Online multiclass classification algorithms [8, 9] learn multiple
hypotheses/classifiers, one classifier for each class in Y, leading to a total of k classifiers
that are trained for the classification task. The predicted label is the one, which is
associated with the largest prediction value, i.e.

ŷt = arg max
i∈{1,...,k}

wt,i · xt.

After the prediction, the true label yt ∈ Y will be disclosed, the learner then compute
the loss based on some criterion to measure the difference between the prediction and
the true label. Based on the results of the loss, the learner finally decides when and how
to update the k classifiers at the end of each learning step.

In particular, this software package consists of 13 different online multiclass classi-
fication algorithms and their variants. In general, they can be grouped into two major
categories: (i) first-order learning [8, 2], and (ii) second-order learning [3, 6].

Specifically, the first-order learning algorithms only keep updating k classification
functions (for the k different labels), which only utilize the first-order information of the
received instances. The main first-order algorithms implemented in this toolbox include:

• Perceptron: the classical multiclass online learning algorithm [8];

• ROMMA: the Multiclass Relaxed Online Maxiumu Margin algorithms [11];

• OGD: the Multiclass Online Gradient Descent (OGD) algorithms [18];

• PA: Multiclass Passive Aggressive (PA) algorithms [2];

Unlike the first-order learning algorithms, the second-order online learning aim to
better exploit the underlying structures between features. Specifically, the second-order
online learning algorithms typically assume the weight vector follows Gaussian distribu-
tions w ∼ N (µµµ,Σ) with mean vector µµµ ∈ R

kd and covariance matrix Σ ∈ R
kd×kd. The

main second-order algorithms implemented in this toolbox include:

• CW: the Multiclass Confidence-Weighted (CW) learning algorithm [3];

• AROW: the Multiclass Adaptive Regularization of Weight Vectors [6];

• SCW: the recently proposed Soft Confidence Weighted algorithms [?].

For the details of all the algorithms, please refer to the section 2.
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1.2 Main Features

• Comprehensiveness: A large family of existing online binary and multiclass
classification algorithms have been implemented in this software package;

• Extendibility: One can easily implement a new algorithm by only implementing
the key updating module;

• Usability: It is easy to use the main functions to evaluate one algorithm by
comparing with all the algorithms;

1.3 Summary of Main Algorithms

Table 1 gives a summary of the family of implemented algorithms in this software package.
For simplicity, we exclude some incremental variants of the algorithms in this list.

Table 1: Summary of the Implemented Algorithms.

Problem Type Methodology Algorithm Description Section

Binary

First-Order

Perceptron The perceptron algorithm [13] 2.1.1

ALMA Approximate Large Margin Algorithm [10] 2.1.2

ROMMA Relaxed Online Maxiumu Margin Algorithms [11] 2.1.3

OGD Online Gradient Descent [18] 2.1.4

PA Passive Aggressive (PA) algorithms [2] 2.1.5

Second-Order

SOP Second-Order Perceptron [1] 2.2.1

Classification CW Confidence-Weighted (CW) learning [4] 2.2.2

IELLIP Improved Ellipsoid method [15] 2.2.3

AROW Adaptive Regularization of Weight Vectors [5] 2.2.4

NAROW New variant of Adaptive Regularization [12] 2.2.5

NHERD Normal Herding method via Gaussian Herding [7] 2.2.6

SCW Soft Confidence Weighted algorithms [14] 2.2.7

Classification

First-Order

Perceptron The perceptron algorithm [13] 3.1.1

ROMMA Approximate Large Margin Algorithm [10] 3.1.2

OGD Online Gradient Descent [18] 3.1.3

PA Passive Aggressive (PA) algorithms [2] 3.1.4

Multiclass

Second-Order

CW Confidence-Weighted (CW) learning [4] 3.2.1

AROW Adaptive Regularization of Weight Vectors [5] 3.2.2

SCW Soft Confidence Weighted algorithms [14] 3.2.3
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1.4 How to Use the LIBOL Package

The current version of LIBOL package includes a MATLAB library, a C library and
command-line tools for the learning task. The data formats used by this software package
are compatible to some of the very popular machine learning and data mining packages,
such as LIBSVM, SVM-light, and WEKA, etc.

To evaluate an algorithm on a dataset with a specific format, one can call the function:

$ demo(TaskType,Algorithm,Dataset,DataFormat)

where the details of the input parameters are listed as in the Table 2.
To easily compare all the online learning algorithms for one problem type on one

dataset, you can call the functions as

$ run experiment(TaskType,Dataset,DataFormat)

where the details of the input parameters are listed as in the Table 2.

Table 2: The input parameters for function “demo.m”.

Parameter Description
The type of the online learning problem.

TaskType Two optional values: ‘bc’ and ‘mc’.
‘bc’ denotes binary classification.
‘mc’ denotes multiclass classification.
The name of the evaluated algorithm, which is in the folder - algorithms.

Algorithm For example, ‘Perceptron’ and ’Perceptron c’ for the ‘bc’ problem.
’Perceptron’ and ’Perceptron c’ are Matlab and C versions, respectively.
For example, ‘PerceptronM’ for the ‘mc’ problem.
The name of the dataset for evaluation

Dataset For example: svmguide3.
For example: ‘ionosphere.arff’.
The format of the dataset.

DataFormat By default, use ‘mat’ version
‘libsvm’ and ‘arff’ denote the format for LIBSVM and WEKA

1.4.1 Folders

The Matlab and C versions of the algorithms listed in subsection 1.1 are located at the
folders “\LIBOL\algorithms” and “\LIBOL\algorithms mex”, respectively. The main
functions “demo” and “run experiment” are located at the folder “\LIBOL”. To use
these functions, you can use the command “addpath(genpath([’root\LIBOL’]));”, where
“root” is the path to the folder “LIBOL”.

All the datasets to be evaluated on should be placed into the folder “\LIBOL\data”.
The dataset can be in formats of mat, LIBSVM and WEKA versions.
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1.4.2 Examples

To illustrate the online learning procedure, we take two data sets from the LIBSVM
website, including one small data set “svmguide3” with 1243 instances and one large
data set “ijcnn1” with 141,691 instances. In the following example, we use the default
“Perceptron” algorithm to demo the usage of LIBOL for a binary classification (‘bc’) task:

$ demo(’bc’, ’Perceptron’, ’svmguide3’)

The results output by the above command are summarized as follows:

Algorithm: mistake rate nb of updates cpu time (seconds)
Perceptron 0.3296 +/- 0.0103 409.75 +/- 12.80 0.0458 +/- 0.0006

To ease researchers to run a full set of experiments for side-by-side comparisons of
different algorithms, we offer a very easy-to-use example program as follows:

$ run experiment(’bc’, ’svmguide3’)

The above command will run side-by-side comparison of varied online learning algo-
rithms on the given data set fully auotmatically, including all the parameter settings and
selection. The full set of experimental results will be generated by the library automa-
tially, as shown in Table 1 and Figure 1.

Table 3: Comparison of a variety of online learning algorithms on two data sets.
Dataset: svmguide3 (#samples=1243,#dimensions=36) ijcnn1 (#samples=141,691,#dimensions=22)
Algorithm mistake # updates time (s) mistake # updates time (s)

Perceptron 0.330 ± 0.010 409.8 ± 12.8 0.045 ± 0.000 0.106 ± 0.001 15052.9 ± 71.2 5.452 ± 0.128
ROMMA 0.338 ± 0.013 419.9 ± 16.4 0.049 ± 0.000 0.101 ± 0.001 14291.8 ± 72.2 5.720 ± 0.160
aROMMA 0.333 ± 0.014 516.3 ± 24.1 0.053 ± 0.001 0.101 ± 0.001 14806.6 ± 98.5 5.542 ± 0.194
ALMA 0.237 ± 0.007 586.4 ± 10.0 0.059 ± 0.001 0.072 ± 0.000 21753.0 ± 58.7 6.671 ± 0.165
OGD 0.238 ± 0.003 637.5 ± 3.3 0.060 ± 0.001 0.095 ± 0.000 27449.6 ± 45.1 6.692 ± 0.174
PA1 0.236 ± 0.002 763.9 ± 9.9 0.063 ± 0.001 0.077 ± 0.000 28399.0 ± 83.5 6.766 ± 0.230
PA2 0.254 ± 0.005 1134.1± 13.3 0.071 ± 0.001 0.081 ± 0.000 61085.9 ± 154.8 18.961 ± 0.895
SOP 0.294 ± 0.009 365.9 ± 11.7 0.104 ± 0.001 0.102 ± 0.001 14487.8 ± 86.0 11.890 ± 0.348
IELLIP 0.317 ± 0.009 393.4 ± 11.4 0.074 ± 0.002 0.119 ± 0.001 16812.3 ± 135.2 7.978 ± 0.249
CW 0.295 ± 0.008 699.9 ± 13.3 0.094 ± 0.001 0.093 ± 0.001 30678.0 ± 146.9 11.181 ± 0.394
NHERD 0.224 ± 0.013 1152.1± 21.9 0.102 ± 0.001 0.084 ± 0.001 84878.5 ± 4007.8 36.555 ± 3.098
AROW 0.225 ± 0.005 1219.5± 6.5 0.127 ± 0.001 0.082 ± 0.000 73563.1 ± 1318.8 29.979 ± 1.460
NAROW 0.267 ± 0.032 1181.5± 39.1 0.133 ± 0.003 0.097 ± 0.013 103203.7 ± 8566.6 53.171 ± 7.636
SCW 0.214 ± 0.006 583.9 ± 14.9 0.084 ± 0.001 0.058 ± 0.002 10829.3 ± 524.0 7.508 ± 0.262
SCW2 0.215 ± 0.008 784.0 ± 70.5 0.093 ± 0.003 0.070 ± 0.001 30965.5 ± 2433.9 9.518 ± 0.447
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Figure 1: Comparison of a variety of online learning algorithms on dataset “svmguide3”.
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This library provides a fairly easy-to-use testbed to facilitate online learning re-
searchers to develop their new algorithms and conduct side-by-side comparisons with
the state-of-the-art algorithms with the minimal efforts.

1.5 Documentation

The LIBOL package comes with comprehensive documentation. The README file
describes the setup and usage. Users can read the “Quick Start” section to begin shortly.
All the functions and related data structures are explained in detail. If the README
file does not give the information users want, they can check the online FAQ. In addition
to software documentation, theoretical properties of the algorithms and comparisons can
be found in [14]. The authors are also willing to answer any further questions.

1.6 Design

The design principle is to keep the package simple, easy to read and extend. All codes
follow the MATLAB standard and need no external libraries, except for the support of
popular data formats, such as LIBSVM and WEKA datasets for which existing libraries
are included. All the online learning algorithms can be called via the uniform “ol train()”
function by setting proper options. In general, LIBOL is written in a modular way, in
which one can easily develop a new algorithm and make side-by-side comparisons with
the existing ones in the package. Thus, LIBOL is not only a machine learning tool, but
also an experimental platform for online learning research.
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2 Online Learning Algorithms for Binary Classification

In a regular binary classification task, the goal of online learning for classification is
to minimize the cumulative mistake number over the entire sequence of data examples.
There are some other atypical settings where other learning objectives are preferred. In
literature, many linear algorithms have been proposed for online classification. They can
be generally grouped into two major categories: (i) first-order online learning algorithms,
and (ii) second-order online learning algorithms; Below we review the basics of these
algorithms in detail.

2.1 First-Order Algorithms

In this section, we provide the details of the first-order learning algorithms and the
corresponding functions(located at /algorithms/Binary-Classification). The first-order
learning algorithms only keep updating one classification function, which only utilizes
the first-order information of the examples.

Specifically, the struct “model” in the codes contains a field “w”, which is the linear
classifier updated round by round. In addition, “model” also contains various parameters
for different algorithms, which will be explained in every algorithm.

2.1.1 Perceptron

The Perceptron [13] algorithm is the earliest and simplest approach for online learning.

Algorithm 2: Perceptron.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ŷt 6= yt);
7 if lt > 0 then
8 The learner updates the classification model:
9 w = w + ltytxt;

10 end

11 end

Perceptron does not contain any parameters.

2.1.2 Approximate Large Margin Algorithm (ALMA)

The Approximate Large Margin Algorithm(ALMA) [10] would try to learn an approxi-
mate large margin classifier.
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Algorithm 3: ALMA: Approximate Large Margin Algorithm .

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max(0, 1−α

α
√
k
− ytwt·xt

‖xt‖ ) > 0);

7 if lt > 0 then
8 The learner updates the classification model:

9 w = (w + lt
√

2/kyt
xt

‖xt‖)/max(1, ‖w + lt
√

2/kyt
xt

‖xt‖‖)
10 k = k + lt;

11 end

12 end

The implemented algorithm is ALMA2(α), so that “model” contains the parameter:

• α ∈ (0, 1]: the final margin is (1− α)γ∗, where γ∗ is the best margin

2.1.3 Relaxed Online Maximum Margin Algorithm (ROMMA)

The Relaxed Online Maximum Margin Algorithm(ROMMA) [11] and its aggressive ver-
sion agg-ROMMA.

Algorithm 4: ROMMA: Relaxed Online Maximum Margin Algorithm.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss:

lt =

{
I(ŷt 6= yt) ROMMA ,

I(max(0, 1 − yt(wt · xt)) > 0) agg-ROMMA .

if lt > 0 then
7 The learner updates the classification model:

8 wt+1 = ( ‖xt‖2‖wt‖2−ytwt·xt

‖xt‖2‖wt‖2−(wt·xt)2
)wt + ( ‖wt‖2(yt−wt·xt)

‖xt‖2‖wt‖2−(wt·xt)2
)xt;

9 end

10 end

The ROMMA and agg-ROMMA algorithm do not contains parameters.
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2.1.4 Online Gradient Descent (OGD) Algorithm

The online gradient descent algorithm [18] applies the gradient descent updating ap-
proach together with the hinge loss.

Algorithm 5: OGD: Online Gradient Descent.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max(0, 1− yt(wt · xt)) > 0);
7 if lt > 0 then
8 The learner updates the classification model:

9 wt+1 = wt + lt
√

1/tytxt;

10 end

11 end

In our implementation, the algorithm does not contains any parameters.

2.1.5 Passive-Aggressive learning (PA)

The family of online Passive-Aggressive (PA) learning [2] is formulated to trade off the
objective of minimizing the distance between the learnt classifier and the previous classi-
fier, and the objective of minimizing the loss of the learnt classier suffered on the current
instance.

Formally the PA algorithm is formulated as the following online optimization problem

wt+1 = argmin
w

1

2
‖w −wt‖2 , s.t. ℓ(w; (xt, yt)) = max(0, 1− yt(w · xt)) = 0

Furthermore, PA is extended to PA-I and PA-II algorithms, which can better handle
the non-separable and noisy case. PA-I is formulated as

wt+1 = argmin
w

1

2
‖w −wt‖2 + Cℓ(w; (xt, yt))

where ℓ(w; (xt, yt)) = max(0, 1 − yt(w · xt)) and C > 0, which is used to trade of the
passiveness and aggressiveness.

Finally, PA-II is formulated as

wt+1 = argmin
w

1

2
‖w −wt‖2 + C(ℓ(w; (xt, yt)))

2

where ℓ(w; (xt, yt)) = max(0, 1 − yt(w · xt)) and C > 0, which is used to trade of the
passiveness and aggressiveness.

The struct “model” contains the following parameter

• C > 0, which trades off the passiveness and aggressiveness

12



Algorithm 6: PA: Passive Aggressive algorithms.

1 Initialize: w1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max(0, 1− yt(wt · xt)) > 0);
7 if lt > 0 then
8 The learner updates the classification model:
9

wt+1 =





wt +
ℓ(wt;(xt,yt))

‖xt‖2 ytxt PA ,

wt +min{C, ℓ(wt;(xt,yt))
‖xt‖2 }ytxt PA-I ,

wt +
ℓ(wt;(xt,yt))

‖xt‖2+ 1
2C

ytxt PA-II.

10 end

11 end

2.2 Second-Order Algorithms

To better exploring the underlying structure between features, the second-order online
learning algorithms typically assume the weight vector follows a Gaussian distribution
w ∼ N (µµµ,Σ) with mean vector µµµ ∈ R

d and covariance matrix Σ ∈ R
d×d.

Specifically, the struct “model” in the codes contains two fields “µµµ” and “Σ”, which
are the mean vector and covariance matrix for the learnt Gaussian distribution. In
addition, “model” also contains various parameters for different algorithms, which will
be explained in every algorithm.

2.2.1 Second-Order Perceptron (SOP)

The Second-Order Perceptron(SOP) [1] could be considered as the second-order coun-
terpart of Perceptron by maintain a covariance matrix Σt.

The struct “model” contains the following parameter:

• a > 0, which is used to initialize the Σ1 = aI, where I is identity matrix.

2.2.2 Confidence-weighted learning (CW)

In confidence-weighted (CW) learning [4], the weight distribution N (µµµ,Σ) is updated
by minimizing the Kullback-Leibler divergence between the new weight distribution and
the old one while ensuring that the probability of correct classfication is greater than a
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Algorithm 7: SOP: Second-Order Perceptron.

1 Initialize: w1 = 0, Σ1 = aI
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where

wt = (Σt + xtx
⊤
t )

−1µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ŷt 6= yt);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + ltytxt, Σt+1 = Σt + ltxtx
⊤
t ;

10 end

11 end

threshold as follows:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL(N (µµµ,Σ),N (µµµt,Σt))

s.t. Prw∼N (µµµ,Σ)[yt(w · xt) ≥ 0] ≥ η

Algorithm 8: CW: Confidence Weighted algorithm.

1 Initialize: w1 = 0, Σ1 = aI, (Φ is the cumulative function of the normal

distribution), ψ = 1 + φ2

2 , and ζ = 1 + φ2

2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner computes the updating coefficients:

7 ut =
1
4(−αtυtφ+

√
αt2υt2φ2 + 4υt)

2, υt = xt
TΣtxt, mt = yt(µµµt · xt)

8 αt = max
{
0, 1

υtζ
(−mtψ +

√
mt

2 φ4

4 + υtφ2ζ)
}
, βt =

αtφ√
ut+υtαtφ

;

9 The learner calculates the suffered loss: lt = I(αt > 0);
10 if lt > 0 then
11 The learner updates the classification model:

12 µµµt+1 = µµµt + αtytΣtxt , Σt+1 = Σt − βtΣtxtxt⊤Σt;
13 end

14 end

The struct “model” contains the following parameters:

• a > 0, which is used to initialize the Σ1 = aI, where I is identity matrix;
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• η ∈ (0.5, 1], which is the probability required for the updated distribution on the
current instance

2.2.3 Improved Ellipsoid Method (IELLIP)

The improved ellipsoid method [15] is an improved version of the classical ellipsoid
method for online learning, which is modified so that it is able to address the insep-
arable case.

Algorithm 9: IELLIP: Improved Ellipsoid Method.

1 Initialize: w1 = 0, Σ1 = aI
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ŷt 6= yt);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + αtΣtgt , Σt+1 =
1

1−ct (Σt − ctΣtgtgt
⊤Σt)

10 αt =
αγ−ytµµµ⊤

t xt√
x⊤
t Σtxt

, gt =
ytxt√
x⊤
t Σtxt

ct = cb⊤, 0 ≤ c, b ≤ 1;

11 end

12 end

The struct “model” contains the following parameters:

• γ > 0: the desired classification margin

• c, b ∈ [0, 1]: parameters controlling the memory of online learning

2.2.4 Adaptive Regularization Of Weights (AROW)

Unlike the original CW learning algorithm, the Adaptive Regularization Of Weights
(AROW) learning introduces the adaptive regularization of the prediction function when
processing each new instance in each learning step, making it more robust than CW to
sudden changes of label noise in the learning tasks. In particular, the optimization is
formulated as follows:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL(N (µµµ,Σ),N (µµµt,Σt)) +
1

2γ
ℓ2(µµµ; (xt, yt)) +

1

2γ
xt

⊤Σtxt

where ℓ2(µµµ; (xt, yt)) = (max{0, 1− yt(µµµ · xt)})2 and γ is a regularization parameter.
The struct “model” contains the following parameters:

• γ > 0: the trade-off between the regularization and the loss
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Algorithm 10: AROW: Adaptive Regularization Of Weights.

1 Initialize: w1 = 0, Σ1 = aI
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max(0, 1− ytw⊤

t xt) > 0);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + αtΣtytxt , Σt+1 = Σt − βtΣtxtxt⊤Σt
10 αt = ℓ(µµµt; (xt, yt))βt, βt =

1
xt

⊤Σtxt+γ
;

11 end

12 end

2.2.5 New Adaptive Regularization of Weights (NAROW)

The New Adaptive Regularize Of Weights (NAROW) is an algorithm that interpolates
between a second-order algorithm with adaptive-second-order-information, like AROW,
and one with fixed-second-order-information. Even the bound is in between these two
worlds, the matrix Σt is updated only less frequently than AROW, preventing its eigen-
values from growing too much.

Algorithm 11: NAROW: New Adaptive Regularization of Weights.

1 Initialize: w1 = 0, Σ1 = aI
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = Σtµµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max(0, 1− ytw⊤

t xt) > 0);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + ytxt , Σt+1 = Σt − βtΣtxtxt⊤Σt
10 βt =

1
xt

⊤Σtxt+γt
, γt =

xt
⊤Σtxt

bxt
⊤Σtxt−1

, when xt
⊤Σtxt ≥ 1/b and γt = +∞;

11 end

12 end

The struct “model” contains the following parameters:

• b > 0: a threshold for deciding the adaptive update
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2.2.6 Normal HERD (NHERD)

The normal herd algorithm is introduced based upon constraining the velocity flow over
a distribution of weight vectors. In particular, it is designed to effectively herd a Gaus-
sian weight vector distribution by trading off velocity constraints with a loss function.
Formally, the updated is performed as follows:

µµµt+1 = Atµµµt + bt , Σt+1 = AtΣtA
⊤
t , (At,bt) = argmin

A,b
Ewt∼N (µµµt,Σt)Ct(Atwt + bt),

where

Ct(w) =

[
1

2
(w −wt)

⊤Σ−1
t (w −wt) +Cℓ(w; (xt, yt))

]
,

and ℓ(w; (xt, yt)) = (max{0, 1 − ytw⊤
t xt})2.

To analytically solve the update problem, the above optimization is further uniformly
relaxed as the following objective

(µµµt+1, At) = argmin
µµµ,A

1

2
(µµµ−µµµt)⊤Σ−1

t (µµµ−µµµt) + Cℓ(µµµ; (xt, yt))

+
1

2
Tr((A− I)⊤Σ−1

t (A− I)Σt) +
C

2
x⊤
t AΣtA

⊤xt

which enjoy a closed-form solution.

Algorithm 12: NAROW: New Adaptive Regularization of Weights.

1 Initialize: w1 = 0, Σ1 = aI
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I((max{0, 1 − ytw⊤

t xt})2 > 0);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + αtΣtytxt , Σt+1 = Σt − βtΣtxtxt⊤Σt
10 αt =

max{0,1−ytµµµ⊤
t xt}

x⊤
t Σtxt+1/C

, βt =
C2

xtΣtx
⊤
t +2C

(1+CxtΣtx
⊤
t )2

;

11 end

12 end

The struct “model” contains the following parameters:

• C > 0: a trade-off between regularization and the loss
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2.2.7 Soft Confidence-weighted learning (SCW)

This section presents the soft confidence-weighted (SCW) learning [14], which aims to
address the limitation of the CW and AROW learning. After the introduction of the
following loss function:

ℓφ
(
N (µµµ,Σ); (xt, yt)

)
= max

(
0, φ

√
x⊤
t Σxt − ytµµµ · xt

)
,

where φ = Φ−1(η), it is easy to verify that the optimization problem of the original CW
can be re-written as follows

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(
N (µµµ,Σ)‖N (µµµt,Σt)

)

s.t. ℓφ
(
N (µµµ,Σ); (xt, yt)

)
= 0, φ > 0

The original CW learning method employs a very aggressive updating strategy by chang-
ing the distribution as much as necessary to satisfy the constraint imposed by the current
example. Although it results in the rapid learning effect, it could force to wrongly change
the parameters of the distribution dramatically when handling a mislabeled instance.
Such undesirable property makes the original CW algorithm performs poorly in many
real-world applications with relatively large noise.

To overcome the above limitation of the CW learning problem, Soft Confidence-
Weighted (SCW) learning method is proposed as follows:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(
N (µµµ,Σ)‖N (µµµt,Σt)

)
+ Cℓφ

(
N (µµµ,Σ); (xt, yt)

)

where C is a parameter to tradeoff the passiveness and aggressiveness. The above for-
mulation of the Soft Confidence-Weighted algorithm is denoted as “SCW-I” for short.

Furthermore, employing a squared penalty leads to the second formulation of SCW
learning (denoted as “SCW-II” for short):

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(
N (µµµ,Σ)‖N (µµµt,Σt)

)
+ Cℓφ

(
N (µµµ,Σ); (xt, yt)

)2

The struct “model” contains the following parameters:

• a > 0, which is used to initialize the Σ1 = aI, where I is identity matrix;

• φ > 0, which is φ = Φ−1(η), where η is the probability required for the updated
distribution on the current instance

• C > 0, which is used to trade-off between keeping the previous information and
minimizing the current loss
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Algorithm 13: SCW: Soft Confidence Weighted algorithms.

1 Initialize: w1 = 0, Σ1 = aI, φ = Φ−1(η), ψ = 1 + φ2

2 and ζ = 1 + φ2

2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = sign(w⊤

t xt), where wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(max{0, 1 − ytw⊤

t xt} > 0);
7 if lt > 0 then
8 The learner updates the classification model:

9 µµµt+1 = µµµt + αtytΣtxt , Σt+1 = Σt − βtΣtxt⊤xtΣt
10

αt =





min{C,max{0, 1
υtζ

(−mtψ +
√
mt

2 φ
4

4 + υtφ2ζ)}} SCW-I,

max{0, −(2mtnt+φ2mtυt)+γt
2(n2

t+ntυtφ2)
} SCW-II.

βt =
αtφ√

ut+υtαtφ
, ut =

1
4 (−αtυtφ+

√
αt2υt2φ2 + 4υt)

2,

υt = xt
⊤Σtxt,mt = yt(µµµt · xt), γt = φ

√
φ2m2

tυ
2
t + 4ntυt(nt + υtφ2), and

nt = υt +
1
2C .

11 end

12 end
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3 Online Learning Algorithms for Multiclass Classification

3.1 First-Order Algorithms

In this section, we provide the details of the first-order learning algorithms and the
corresponding functions (located at /algorithms/Multiclass-Classification). The first-
order learning algorithms only keep updating k classification functions (for the k different
labels), which only utilize the first-order information of the examples.

Specifically, the struct “model” in the codes contains a field “W”, which is a k × d
matrix, whose i-th row is the linear classifier for the i-th label. In addition, “model”
also contains various different parameters for different algorithms, which will be listed in
every algorithm.

3.1.1 Multiclass Perceptron

Crammer and Singer extended the binary Perceptron algorithm to a family of multiclass
Perceptron algorithms [8], by allocating different weights on the support vectors added to
the classifiers corresponding to those error-set E = {i 6= y :Wi ·x ≥Wy ·x}. According to
different allocation strategies, three variants of multiclass Perceptron algorithms are pro-
posed: max-score multiclass Perceptron, uniform multiclass Perceptron, and proportion
multiclass Perceptron.

Algorithm 14: M-Perceptron: multiclass Perceptron algorithms.

1 Initialize: W1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(Wt,i · xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ŷt 6= yt).;
7 if lt > 0 then
8 The learner updates the classification model:
9 Wt+1,i =Wt,i + αt,ixt

10 end

11 end

For max-score multiclass update,

αt,i =





−1 i = argmaxkj=1Wt,j · xt
1 i = yt
0 otherwise

For uniform multiclass update,

αt,i =





−1/|Et| i ∈ Et, Et = {i 6= yt : Wt,i · xt ≥Wt,yt · xt}
1 i = yt
0 otherwise
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For promotion multiclass update,

αt,i =

{
− [Wt,i·xt−Wt,yt ·xt]+

∑k
j=1[Wt,j ·xt−Wt,yt ·xt]+

i 6= yt

1 i = yt

where [z]+ = max(z, 0).

3.1.2 Multiclass Relaxed Online Maximum Margin Algorithm

Algorithm 15: M-ROMMA: Multiclass Relaxed Online Maximum Margin Algo-
rithm algorithms.

1 Initialize: W1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(Wt,i · xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss:

lt =

{
I(ŷt 6= yt) Multiclass ROMMA
I(max(0, 1 − (Wt,yt · xt −maxj 6=yt Wt,j · xt)) > 0) Multiclass agg-ROMMA

if lt > 0 then
7 The learner updates the classification model:
8 Wt+1,i = ctWt,i + αt,idtxt

9 ct =
2‖xt‖2‖W‖2−(Wt,yt ·xt−maxj 6=yt

Wt,j ·xt)

2‖xt‖2‖W‖2−(Wt,yt ·xt−maxj 6=yt
Wt,j ·xt)2

10 dt =
‖W‖2(1−(Wt,yt ·xt−maxj 6=yt

Wt,j ·xt))

2‖xt‖2‖W‖2−(Wt,yt ·xt−maxj 6=yt
Wt,j ·xt)2

11

αt,i =





−1 i = argmaxkj=1Wt,j · xt
1 i = yt
0 otherwise

12 end

13 end

The ROMMA and agg-ROMMA algorithm do not contains parameters.

3.1.3 Multiclass Online Gradient Descent Algorithm

The online gradient descent algorithm [18] applies the gradient descent updating ap-
proach together with the following hinge loss:

ℓ(W ; (xt, yt)) = max

(
0, 1 − (Wyt · xt −max

j 6=yt
Wj · xt)

)
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Algorithm 16: M-OGD: Multiclass Online Gradient Descent Algorithm.

1 Initialize: W1 = 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(Wt,i · xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ℓ(Wt; (xt, yt)) > 0);
7 if lt > 0 then
8 The learner updates the classification model:
9 Wt+1,i =Wt,i + αt,ixt

10

αt,i =





−1/
√
t i = argmaxkj=1Wt,j · xt

1/
√
t i = yt

0 otherwise

11 end

12 end

In our implementation, the algorithm does not contains any parameters.

3.1.4 Multiclass Passive Aggressive Algorithms

The family of online multiclass Passive-Aggressive (PA) learning [2] is extended from
its binary version, which is formulated to trade off minimizing the distance between the
learnt classifier and the previous classifier, and minimizing the loss of the learnt classier
suffered on the current instance.

Formally the PA algorithm is formulated as the following online optimization problem

Wt+1 = argmin
W

1

2
‖W −Wt‖2 , s.t. ℓ(W ; (xt, yt)) = max

(
0, 1− (Wyt · xt −max

j 6=yt
Wj · xt)

)
= 0

The multiclass Passive Aggressive algorithm is extended to multiclass Passive Ag-
gressive I and II algorithms, which can better handle the non-separable case. Multiclass
Passive Aggressive I is formulated as

Wt+1 = argmin
W

1

2
‖W −Wt‖2 + Cℓ(W ; (xt, yt))

Multiclass Passive Aggressive II is formulated as

Wt+1 = argmin
W

1

2
‖W −Wt‖2 + Cℓ(W ; (xt, yt))

2

For multiclass Passive Aggressive algorithm

αt,i =





− ℓ(Wt;(xt,yt))
2‖xt‖2 i = argmaxkj=1Wt,j · xt

ℓ(Wt;(xt,yt))
2‖xt‖2 i = yt

0 otherwise
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Algorithm 17: M-PA: Multiclass Passive Aggressive Algorithms.

1 Initialize: W1 = 0, C > 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(Wt,i · xt);
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner calculates the suffered loss: lt = I(ℓ(Wt; (xt, yt)) > 0);
7 if lt > 0 then
8 The learner updates the classification model:
9 Wt+1,i =Wt,i + αt,ixt;

10 end

11 end

For multiclass Passive Aggressive I algorithm

αt,i =





−min(C, ℓ(Wt;(xt,yt))
2‖xt‖2 ) i = argmaxkj=1Wt,j · xt

min(C, ℓ(Wt;(xt,yt))
2‖xt‖2 ) i = yt

0 otherwise

For multiclass Passive Aggressive II algorithm, the function

αt,i =





− ℓ(Wt;(xt,yt))

2‖xt‖2+ 1
2C

i = argmaxkj=1Wt,j · xt
ℓ(Wt;(xt,yt))

2‖xt‖2+ 1
2C

i = yt

0 otherwise

23



3.2 Second-Order Algorithms

To better exploring the underlying structure between features, the second-order online
learning algorithms typically assume the weight vector follows Gaussian distributions
w ∼ N (µµµ,Σ) with mean vector µµµ ∈ R

kd and covariance matrix Σ ∈ R
kd×kd.

Specifically, the struct “model” in the codes contains two fields “µµµ ∈ R
kd” and

“Σ ∈ R
kd×kd”, which are the mean vector and covariance matrix for the learnt Gaus-

sian distribution. In addition, “model” also contains various parameters for different
algorithms, which will be explained in every algorithm.

3.2.1 Multiclass Confidence Weighted Learning

In multiclass confidence-weighted learning [3], the weight distribution N (µµµ,Σ) is updated
with one strategy similar with the binary case. To make the proposed algorithms more
efficient, the authors proposed three variant of multiclass confidence weighted algorithms.
Here, we implemented the most efficient one.

Specifically, we introduced a new label-dependent feature, ψ(x, i) = [0⊤, . . . ,x⊤, . . . ,0⊤]⊤,
where 0,x ∈ R

d, only the i-th position of ψ(x, i) is x and the others are 0.

Algorithm 18: M-CW: Multiclass Confidence Weighted Algorithms.

1 Initialize: µµµ1 = 0” and “Σ1 = I, φ = Φ−1(η) and η ∈ (0.5, 1]
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(wt · ψ(xt, i)), where

wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner computes all the updating coefficients:

7 mt = µµµ⊤t ∆ψt, υt = ∆ψt
⊤Σt∆ψt

8 αt = max
{
0,

−(1+2φmt)+
√

(1+2φmt)2−8φ(mt−φυt)
4φυt

}
, βt =

1
1/(2αtφ)+υt

;

9 The learner calculates the suffered loss: lt = I(αt > 0);
10 if lt > 0 then
11 The learner updates the classification model:

12 µµµt+1 = µµµt + αtΣt∆ψt , Σt+1 = Σt − βtΣt∆ψt∆ψt⊤Σt
13 where ∆ψt = ψ(xt, yt)− ψ(xt, ỹt), ỹt = argmaxki=1,i 6=yt(µµµi · xt);
14 end

15 end

The struct “model” contains the following parameters:

• η ∈ (0.5, 1], which is the probability required for the updated distribution on the
current instance
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3.2.2 Multiclass Adaptive Regularization Of Weights

The multiclass AROW [6] is a natural extension of of binary AROW algorithm. To extend
the binary algorithm, the authors proposed two kinds of updating methods. Here, the
implemented version is the most efficient one.

Algorithm 19: M-AROW: Multiclass Adaptive Regularization Of Weights.

1 Initialize: µµµ1 = 0” and “Σ1 = I, φ = Φ−1(η), η ∈ (0.5, 1], and r > 0
2 for t = 1, 2, . . . , T do
3 The learner receives an incoming instance: xt ∈ X ;
4 The learner predicts the class label: ŷt = argmaxki=1(wt · ψ(xt, i)), where

wt = µµµt;
5 The true class label is revealed from the environment: yt ∈ Y;
6 The learner computes all the updating coefficients:

7 mt = µµµ⊤t ∆ψt, υt = ∆ψt
⊤Σt∆ψt, αt = max

{
0, 1 −mt

}
βt, βt =

1
r+υt

;

8 The learner calculates the suffered loss: lt = I(mt < 1);
9 if lt > 0 then

10 The learner updates the classification model:

11 µµµt+1 = µµµt + αtΣt∆ψt , Σt+1 = Σt − βtΣt∆ψt∆ψt⊤Σt
12 where ∆ψt = ψ(xt, yt)− ψ(xt, ỹt), ỹt = argmaxki=1,i 6=yt(µµµi · xt);
13 end

14 end

The struct “model” contains the following parameters:

• r ∈ (0,+∞),

3.2.3 Multiclass Soft Confidence-Weighted Learning

In Multiclass Soft Confidence-Weighted learning, we assume the each prototype vector
wi follows the Gaussian distribution with the mean vector µµµi and the covariance matrix
Σi. For simplicity, we assume each prototype i ∈ [1, k] share the same covariance matrix
Σ. In multiclass learning setting, we want to make that the probability of the score of
the class of the smallest score among all relevant classes to be higher than the score of
the class of the highest score among all irrelevant classes is larger than a threshold η. In
mathematical form, the constrain can be expressed as follows:

Prwt,rt∼N (µµµt,rt ,Σt),wt,st∼N (µµµt,st ,Σt)[(wt,rt · xt) ≥ (wt,st · xt)] ≥ η (1)

where

rt = argmin
r∈Yt

µµµt,r · xt, st = argmax
s/∈Yt

µµµt,s · xt (2)

To overcome the above limitation of the CW learning problem, we propose a Soft
Confidence-Weighted (SCW) learning method, which aims to soften the aggressiveness
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of the CW updating strategy. The idea of the SCW learning is inspired by the variants
of PA algorithms (PA-I and PA-II) and the adaptive margin. In particular, we formulate
the optimization of SCW for learning the soft-margin classifiers as follows:

(µµµt+1,rt ,µµµt+1,st ,Σt+1) = arg min
µµµr ,µµµs,Σ

DKL

(
N (µµµr,Σ)‖N (µµµt,rt ,Σt)

)
(3)

+ DKL

(
N (µµµs,Σ)‖N (µµµt,st ,Σt)

)
(4)

+ Cℓφ
(
N (µµµr,µµµs,Σt); (xt, yt)

)
(5)

where C is a parameter to tradeoff the passiveness and aggressiveness. We denoted the
above formulation of the Multiclass Soft Confidence-Weighted algorithm, as “M-SCW1”
for short.

The closed-form solution of the optimization (3) is expressed as:

µµµt+1,rt = µµµt,rt + αtytΣtxt, µµµt+1,st = µµµt,st − αtytΣtxt,
Σt+1 = Σt − βtΣtxtTxtΣt

where the updating coefficients are as follows:

αt = min{C,max{0, 1

2υtψ
(−mtψ +

√
mt

2ψ2 −mt
2ψ + 2ψφ2υt)}}

βt =
αtφ√

2ut + υtαtφ

where ut =
1
8 (−αtυtφ +

√
αt2υt2φ2 + 8υt)

2,υt = xt
TΣtxt,mt = µµµt,rt · xt − µµµt,st · xt,φ =

Φ−1(η),ψ = 1 + φ2

2 .
Similar to the variant of PA, we can also modify the above formulation by employing a

squared penalty, leading to the second formulation of Multiclass SCW learning (denoted
as “M-SCW2” for short):

(µµµt+1,rt ,µµµt+1,st ,Σt+1) = arg min
µµµr ,µµµs,Σ

DKL

(
N (µµµr,Σ)‖N (µµµt,rt ,Σt)

)
(6)

+ DKL

(
N (µµµs,Σ)‖N (µµµt,st ,Σt)

)
(7)

+ Cℓφ
(
N (µµµr,µµµs,Σt); (xt, yt)

)2
(8)

The closed-form solution of the optimization (6) is:

µµµt+1,rt = µµµt,rt + αtytΣtxt, µµµt+1,st = µµµt,st − αtytΣtxt,
Σt+1 = Σt − βtΣtxtTxtΣt

The updating coefficients are as follows:

αt = max{0, −(2mtρt + φ2mtυt) + γt
2(ρ2t + ρtυtφ2)

}, βt =
αtφ√

2ut + υtαtφ

where γt = φ
√
φ2m2

tυ
2
t + 8ρtυt(ρt + υtφ2), and ρt = 2υt +

1
2C .

In the implementation of MSCW1 an MSCW2 functions, you can specify the struct
“model” with the following parameters:
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• a > 0, which is used to initialize the Σ1 = aI, where I is identity matrix;

• φ > 0, which is φ = Φ−1(η), where η is the probability required for the updated
distribution on the current instance

• C > 0, which is used to trade-off between keeping the previous information and
minimizing the current loss

Algorithm 20: Multiclass SCW learning algorithms (M-SCW)

1 INPUT: parameters C > 0, η > 0.

2 INITIALIZATION: µµµ1,1, ...,µµµ1,k = (0, . . . , 0)⊤, Σ1 = I. for t = 1, . . . , T do
3 Receive an example xt ∈ R

d;

4 Make prediction: Ŷt = argmaxr(µµµt,r · xt), r ∈ [1, k];
5 Receive true label Yt;

6 Suffer loss ℓφ
(
N (µµµt,rt ,µµµt,st ,Σt); (xt, Yt)

)
;

7 if ℓφ
(
N (µµµt,rt ,µµµt,st,Σt); (xt, Yt)

)
> 0 then

8 µµµt+1,rt = µµµt,rt + αtytΣtxt,
9 µµµt+1,st = µµµt,st − αtytΣtxt,

10 Σt+1 = Σt − βtΣtxtTxtΣt
11 where αt and βt are computed as follows:

MSCW1 =

{
αt = min{C,max{0, 1

2υtψ
(−mtψ +

√
mt

2ψ2 −mt
2ψ + 2ψφ2υt)}}

βt =
αtφ√

2ut+υtαtφ

where ut =
1
8(−αtυtφ+

√
αt2υt2φ2 + 8υt)

2,υt = xt
TΣtxt,mt =

µµµt,rt · xt −µµµt,st · xt,φ = Φ−1(η),ψ = 1 + φ2

2 .

MSCW2 =

{
αt = max{0, −(2mtρt+φ2mtυt)+γt

2(ρ2t+ρtυtφ
2)

}
βt =

αtφ√
2ut+υtαtφ

where γt = φ
√
φ2m2

tυ
2
t + 8ρtυt(ρt + υtφ2), and ρt = 2υt +

1
2C .

12 end

13 end
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4 Conclusions, Revision, and Citation

LIBOL is an easy-to-use open source package for efficient and scalable on-line linear
classification. It is currently one of comprehensive online learning software packages that
include the largest number of diverse online learning algorithms for online classification.
LIBOL is still being improved by improvements from practical users and new research
results [16, 17]. The ultimate goal is to make easy learning with massive-scale data
streams to tackle the emerging grand challenge of big data mining.

Revision History

• Version 0.1 was released on 28 December 2012. This version mainly includes MAT-
LAB implementation for binary classification .

• Version 0.2 was released on 28 July 2013. This version includes several major
improvements: (i) C++ implementations for the main functions; (ii) online learning
algorithms for multi-class classification; (iii) new design and framework.

More details of the revision history can be found in LIBOL website:

http://LIBOL.stevenhoi.org/changelog.html

Welcome to send us your suggestions/corrections for LIBOL by the following email:

chhoi@ntu.edu.sg

Citation

In citing LIBOL in your papers, please use the following reference:

S.C.H. Hoi, J. Wang, P. Zhao. LIBOL: A Library for Online Learning Algorithms.
Nanyang Technological University, 2012. http://LIBOL.stevenhoi.org.
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