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Abstract Collaborative Topic Regression (CTR) combines ideas of probabilistic ma-
trix factorization (PMF) and topic modeling (e.g., LDA) for recommender systems,
which has gained increasing successes in many applications. Despite enjoying many
advantages, the existing Batch Decoupled Inference algorithm for CTR model (bdi-
CTR) has some critical limitations. First of all, it is designed to work in a batch
learning manner, making them unsuitable to deal with streaming data or big data
in real-world recommender systems. Second, the item-specific topic proportions of
LDA are fed to the downstream PMF, but not reverse, which is sub-optimal as the
rating information is not exploited in discovering the low-dimensional representation
of documents and thus can result in a sub-optimal representation for prediction. In
this paper, we propose a novel inference algorithm, called the Online Bayesian Infer-
ence algorithm for CTR model (obi-CTR), which is efficient and scalable for learning
from data streams. Particularly, we jointly optimize the combined objective function
of both PMF and LDA in an online learning fashion, in which both PMF and LDA
tasks can be reinforced each other during the online learning process. Our encourag-
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ing experimental results on real-world data validate the effectiveness of the proposed
method.

Keywords Topic modeling, Online Learning, Recommender Systems, Collaborative
filtering, Latent structure interpretation

1 Introduction

Due to the abundance of personalized online business, Recommender Systems (RS)
now play an important role to help us to make effective use of information. For exam-
ple, CiteULike! adopts RS for article recommendations, and Movielens? uses RS for
movie recommendations. The core technique behind RS is a personalization algorith-
m (Almazro et al. 2010) for predicting the preference of each individual user by mak-
ing use of different sources of information with respect to users and items. The most
popular algorithms adopt the collaborative filtering (CF) technique (Su and Khosh-
goftaar 2009; Breese et al. 1998), which analyzes the relationship between users and
interdependencies among items, in order to identify new user-item associations. In
general, CF is a method of making predictions (“filtering”’) about the interests of a
user via collecting preferences from many users (”collaborating”). One of the most
successful techniques for CF methods is based on Probabilistic Matric Factorization
(PMF) (Mnih and Salakhutdinov 2007) where a partially observed user-item rating
matrix is approximated by the product of two low-rank matrices (latent factors) so as
to complete the rating matrix towards recommendation purposes. Despite their pop-
ularity, most of traditional CF methods only use feedback matrix which contains the
ratings on the items given by users. The prediction performance often drops signif-
icantly when the feedback matrix is sparse, which means that most items are given
feedback by few users or most users give feedback to few items, since it is susceptible
to overfitting. However, in the real-world scenarios, most users provide only a little
feedback especially for new users, which have yet to provide rating information. On
the other hand, in addition to the feedback matrix, auxiliary information is sometimes
readily available, and could provide key information for recommendation task, while
many of existing CF methods ignore such side information, or intrinsically, are not
capable of exploiting it.

To overcome the sparsity issue of CF methods, Collaborative Topic Regression
(CTR) has been actively explored in recent years (Wang and Blei 2011). Instead of
purely relying on CF approaches, CTR aims to leverages content-based techniques
to overcome inaccurate and unreliable predictions with traditional CF methods due
to data sparsity and other challenges. More specifically, CTR combines the idea of
PMF for predicting ratings, and the idea of probabilistic topic modeling, e.g., Latent
Dirchelet Allocation (LDA), for analyzing the content of items towards recommen-
dation tasks. It is a joint probabilistic graphic model that integrates LDA model and
PMF model. CTR has been shown as a promising method that produces more accu-
rate and interpretable results and has been successfully applied in many recommender

! http://www.citeulike.org
2 http://movielens.org/
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systems, such as tag recommendation (Wang et al. 2013; Lu et al. 2015), and social
recommender systems (Purushotham et al. 2012; Kang and Lerman 2013).

Despite being studied actively and extended to various kinds of applications
(Wang and Blei 2011; Wang et al. 2013), no attempts have been made to develop
efficient and scalable approximate inference algorithms of CTR model. The existing
Batch Decoupled Inference algorithm for CTR model (bdi-CTR) suffers from several
critical limitations. First of all, it is often designed to work in a batch mode learning
fashion, by assuming that all text contents of items as well as the rating training data
are given prior to the learning tasks. During the training process, both the inference
procedure of LDA and PMF models are usually trained separately in a batch training
fashion. Such an approach would suffer from a huge scalability drawback when new
data (users or items) may arrive sequentially and get updated frequently in a real-
world online recommender system. Second, although the graphical model of CTR is
a joint model (two-way interaction exists between LDA model and PMF model), bdi-
CTR only leverages the content information to improve the CF tasks, but not reverse.
It first estimate LDA model, and then feed the document-specific topic proportions of
LDA to the downstream PMF part. This two-step inference procedure is inconsistent
with the joint graphical model of CTR and rather suboptimal as the the rating infor-
mation is not used in discovering the low-dimensional representation of documents,
which is clearly not an optimal representation for prediction as the two methods are
not tightly coupled to fully exploit their potential. Our work is motivated to explore
more efficient, scalable, and effective techniques to maximize the potential exploiting
extremes in dealing with data streams from real-world online recommender systems.

To overcome the limitations of bdi-CTR, we propose a novel approximate infer-
ence scheme, called Online Bayesian Inference algorithm for CTR model (obi-CTR),
which jointly optimizes a unified objective function by combining both PMF model
and LDA model in an online learning fashion. In contrast to bdi-CTR, Our novel ap-
proximate inference scheme is able to achieve a much tighter coupling of both PMF
and LDA, where both LDA and PMF tasks influence each other naturally and grad-
ually via the joint optimization in the online learning process. This interplay yields
topic representations of each item that are more suitable for making accurate and
reliable rating prediction tasks.

To the best of our knowledge, our novel approximate inference algorithm is the
first online learning algorithm for solving CTR tasks with fully joint optimization
of both LDA model and PMF model. Our encouraging results from extensive ex-
periments on large scale real-world data set show that the proposed online learning
algorithms are scalable and effective, and it not only outperforms the state-of-the-art
methods for rating prediction tasks but also yields more suitable latent topic propor-
tions in topic modeling tasks. Besides, our novel approximate inference algorithm
can be applied to other variants of CTR model (see Section 2.2 for more on related
work).

In the following, we first review some important related work, then present a for-
mal formulation of CTR model and our novel approximate inference algorithm, On-
line Bayesian Inference algorithm for CTR model (obi-CTR). After that, we conduct
extensive empirical studies and compare the proposed algorithms with the existing
techniques, and finally set out our conclusions of this work.
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2 Related work

In this section, we will provide a brief review of the prior studies related to our work,
and some background of CTR model.

2.1 Online Learning and Online Bayesian Inference

Online learning has been extensively studied in the machine learning communities
(Cesa-Bianchi and Lugosi 2006; Shalev-Shwartz 2011; Zhao et al. 2011; Hoi et al.
2014; Hoi, Jin, Zhao and Yang 2013), mainly due to its high efficiency and scalabil-
ity to large-scale learning tasks. Different from conventional batch learning methods
that assume all training instances are available prior to the learning phase, online
learning considers one instance each time to update the predictive models sequen-
tially and iteratively, which is more appropriate for large-scale applications where
training data often arrive sequentially. In literature, a number of online learning al-
gorithms have been proposed. A classical online learning method is the Perceptron
algorithm (Rosenblatt 1958), which adopt an additive update rule for the classifier
weights when a new instance is misclassified. Recently a lot of new online learning
algorithms have been proposed based on the concept of “max margin” (Crammer
et al. 2006; Crammer and Singer 2003; Gentile 2002). One notable technique in this
category is the online Passive-Aggressive (PA) algorithm (Crammer et al. 2006). On
each round, passive-aggressive algorithms solve a constrained optimization problem
which balances between two competing goals: being conservative, in order to retain
information acquired on preceding rounds, and being corrective, in order to make a
more accurate prediction when a new instance is misclassified or its classification
score does not exceed some predefined margin. In particular, PA method considers
loss functions that enforce max-margin constraints and its simple update rule enjoys
a closed form solution. Motivated by PA method, (Hoi, Zhao, Zhao and Hoi 2013;
Wang, Zhao and Hoi 2014) apply parameter confidence information to improve on-
line learning performance.

Although the classical research work of online learning is based on decision theo-
ry (Cesa-Bianchi and Lugosi 2006) and convex optimization (Shalev-Shwartz 2011),
much progress has been made for developing online Bayesian Inference (Hoffman
et al. 2010, 2013; Kingma and Welling 2013; Foulds et al. 2013). Rather than achiev-
ing a single point estimate of parameters typically in the optimization-based setting,
Bayesian methods attempt to obtain the full posterior distribution over the unknown
parameters and latent variables in the model, hence providing better characterization-
s of the uncertainties in the learning process and avoiding overfitting. There are two
categories of studies on the topic of online Bayesian Inference. One direction is to
extend Monte Carlo methods to the online setting. A classic approach is sequential
Monte Carlo or particle filters (Robert and Casella 2013), which approximate virtual-
ly any sequence of probability distributions. Most recently, Welling and Teh (2011);
Patterson and Teh (2013); Ahn et al. (2012) proposed stochastic gradient Langevin
method by updating parameters according to both the stochastic gradients as well
as additional noise, which asymptotically produce samples from the posterior distri-
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bution. Another direction is online variational Bayes (Hoffman et al. 2010, 2013;
Kingma and Welling 2013; Foulds et al. 2013), where on each round only a mini-
batch of instances is processed to give a noisy estimate of the gradient. Although
these algorithms have shown impressive results. Most of them have adopted stochas-
tic approximation of posterior distribution by sub-sampling a given finite data set,
which is unsuitable for many applications where data size is unknown in advance.

To relax this assumption, researchers in (Broderick et al. 2013; Ghahramani and
Attias 2000) made streaming updates to the estimated posterior. The intuition behind
this idea is that we could treat the posterior after observing 7' — 1 samples as the new
prior for the incoming data points. Specifically, suppose the training data {0, };>¢ are
generated i.i.d. according to a distribution p(o|x) and the prior p(x) is given. Bayes’
theorem implies the posterior distribution of x given the first 7" samples (T' > 1)
satisfies

p(xl{o}{Zo) < p(x|[{o}/ 5 )p(or|x).

For complex models, we can use an approximate algorithm A that calculates an ap-
proximate posterior ¢ : ¢(x) = A(X, go(x)) where X is the observed data and go(x)
is the prior distribution. Then, we can recursively calculate an approximation to the
posterior:

a(x[{o}{Zo) = Alor, q(x|{o};))-

In addition, (Mclnerney et al. 2015) introduced the population Variational Bayes
(PVB) method which combines traditional Bayesian inference with the frequentist
idea of the population distribution for streaming inference. (Shi and Zhu 2014) pro-
posed the Online Bayesian Passive-Aggressive (BayesPA) method for max-margin
Bayesian inference of online streaming data. The high scalability of the above meth-
ods motivates us to propose Online Bayesian inference for CTR model.

2.2 The graphical model of CTR and its variants

Collaborative topic regression (Wang and Blei 2011) is proposed to recommend
items to users by seamlessly integrating both feedback matrix and the content of
items into the same model. By combining PMF model and LDA model, CTR has
gained increasing successes in many applications. Figure 1 shows the graphical mod-
el of CTR. Suppose there are I users and J items. Each data sample is a 3-tuple
(4,j,7i;) where i € {1,2,--- I} is the user index, j € {1,2,---,J} is the item
index and 7;; € R is the rating value assigned to item j by user ¢. We assume the
rating data arrives sequentially in an online recommender system. Let R denote the
whole rating samples and the collection of J items is regarded as a document set
W = {Wj}}]:r Let Z = {zj}}’:1 and ©® = {ej}}]:1 denote all the topic assign-
ments and topic proportions of each item. We represent users and items in a shared
latent low-dimensional space of dimension K, which is equal to the number of top-
ics, user i is represented by a latent vector u; € R¥ and item j by a latent vector
\ZRS RE.
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LDA-step

PMF-step

Fig. 1 The graphical models of Collaborative Topic Regression Model (Wang and Blei 2011). The ap-
proximate inference procedure consists of two steps: (i) first runs LDA-step, (ii) and then feeds topic
proportions @ to the PMF-step

Basically, the CTR model assumes that each item is generated by a topic model
and additionally includes a latent variable €; which offsets the topic proportions 8;
when modeling the user’s latent vector. This offset variable €; can capture the item
preference of a particular user based on their ratings. Assume there are K topics
® = {¢; }£ |. The generative process of the CTR model is as follows:

1. For each user ¢, draw user latent vector
u; ~ N(0, %IK).
2. For each item j,
(a) Draw topic proportions 8; ~ Dirichlet(c).
(b) Draw item latent offset €; ~ A/(0, %I x)) and set the item latent vector as
Vj = Gj + Hj. ‘
(¢) For each word w;,(1 < n < Nj),
i. Draw topic assignment z;,, ~ Mult(0;).
ii. Draw word wj, ~ Mult(¢.,, ).
3. For each user-item pair (4, j), draw the rating r;; ~ N (ulv;, Ui%)

In step 2 (¢) ii. ¢.;, denotes the topic selected by the non-zero entry of z;,. The
topics are random samples drawn from a prior, e.g., ¢ ~ Dirichlet(3). Note that
v; = €; + 0;, where €; ~ N(0, 1), is equivalent to v; ~ N(0;, 5Ik). As
mentioned in (Wang and Blei 201 1),Fthis assumption plays a key role in CTR model,
which makes the item latent vector v; is close to topic proportions 6;, but could
diverge from it if it has to.

Researchers have extended CTR models to different applications of recommender
systems. Some researchers extended CTR models by integrating with other side infor-
mation. In CTR-smf (Purushotham et al. 2012), authors integrated CTR with social
matrix factorization models to take social correlation between users into account. In
LA-CTR (Kang and Lerman 2013), they assumed that users divide their limited at-
tention non-uniformly over other people. In HFT (McAuley and Leskovec 2013),
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they aligned hidden factors in product ratings with hidden topics in product reviews
for product recommendations. In CSTR (Ding et al. 2013), authors explored how
to recommend celebrities to general users in the context of social network. In CTR-
SR (Wang et al. 2013), authors adapted CTR model by combining both item-tag
matrix and item content information for tag recommendation tasks. There were also
several works that attempted to extract latent topic proportions of text information in
CTR via deep learning techniques (Wang, Wang and Yeung 2014; Wang et al. 2015;
Van den Oord et al. 2013). However, all of these work followed the same approximate
inference procedure as (Wang and Blei 2011) in a batch learning mode.

Independently of our study, (Gopalan et al. 2014) developed a similar graphical
model (CTPF) for articles recommendations task. Unlike CTR which applies PMF
for recommendation model and LDA for document model, CTPF replaces both the
usual Gaussian likelihood in PMF and multinomial likelihood in LDA with Poisson
likelihood. This modification of graphical model makes it become a simple condi-
tionally conjugate model and allows it to easily enjoy scalable approximate inference
by using stochastic variational inference technique. However, the graphical model
of original CTR is a direct combination of PMF and LDA, which is a much more
complex non-conjugate model and makes its approximate inference non-trivial and
challenging. In our work, we focus on the original graphical model of CTR and joint-
ly optimize the combined objective function by using streaming variational inference.
Moreover, CTR is widely used in different applications of recommender systems and
has been extended to various kind of graphical model. Our scalable approximate in-
ference method can also be generalized to these graphical model.

3 Online Bayesian Collaborative Topic Regression
3.1 Inference algorithm for CTR: Revisited

Before introducing our novel Online Bayesian Inference algorithm for CTR mod-
el (obi-CTR). we first review the batch decoupled approximate inference method
(Wang and Blei 2011) proposed (bdi-CTR), which has been applied to other variants
of CTR models (see Section 2.2 for more on related work).

Given the document set W and rating data R (observered variables), we let U =
{w}_,,V = {v; }}-]:1, the goal of CTR is to infer the posterior distribution of
hidden variables U, V,Z, ®, O,

p(U,V,Z,2,0|W,.R)

where prior distribution po(U, V,Z, ®,0) = Hle po(u;|oy) szl po(vjlo,)

HnNi1 Po(2jn]0;) Hszl po(®k|B) H}]=1 po(0;|a) according to the generative pro-
cess of CTR as shown in Figure 1. Because computing the full posterior of
U,V,Z,®, O directly is intractable, (Wang and Blei 2011) proposed a heuristic
two-stage method for approximate inference . It simply modifies the original pos-
terior distribution pp(U,V,Z, ®, @|W, R) by separating it into two parts, pos-
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terior distribution p(Z, ®, ®|W) with respect to LDA part and posterior distribu-
tion p(U, V|R, ©®) with respect to PMF part. First, it approximately infers posterior
p(Z, ®,0|W) of LDA part via a traditional LDA learning method (Blei et al. 2003).
Then, it learns the maximum a posteriori (MAP) estimates of U, V, ® with respect
to p(U, V|R, ©) by feeding the results of © in the first step into the PMF part. Max-
imization of p(U, V|R, ©) is equivalent to maximizing its log likelihood as follows

on T ol T
L= —7Zui u; — 72("1’ —6;) (v; —6;)

J
2
o T, \2
+2 D> 1080 Oindru,,) — Y o (ri —ulv)? 2
j on k ,J

We can optimize this function by gradient descent method, iteratively optimizing
the collaborative filtering variables u;, v; and the topic proportions variables 6;. For

u;, v;, they follow a similar fashion as basic matrix factorization 3,

w; ¢ w; — p(ogu; — (ri; — uf v;)v;)

Vi v = p(ol (v — ;) — (ryy —u) vj)w), 3)
where p is the learning rate. For 6, projection gradient is adopted, since they cannot
optimize 6; analytically. In addition, (Wang and Blei 2011) points out that simply
fixing 6; as the estimate from previous LDA step could give comparable perfor-
mance and save computation, which is consistent with our analysis — this inference
algorithm is rather suboptimal and tends to get trapped into local optimum. Finally,
we summarize the bdi-CTR algorithm in algorithm 1.

Algorithm 1 The Batch Decoupled Inference algorithm for CTR model (bdi-CTR)

Initialize U, V, Z randomly

Input: rating data R and document set W

LDA-step: Compute @, ®, Z by traditional LDA inference method (Blei et al. 2003)

PMF-step: Given © (the result of LDA-step) and R, compute U, V by traditional gradient descent
method

Output: U,V and Z

Motivated by the online LDA methods Hoffman et al. (2010); Mimno et al.
(2012), we extend bdi-CTR algorithm to an online learning version (odi-CTR) by
incorporating the online LDA method Hoffman et al. (2010). Online LDA is an EM
style method. In the E-step, it approximately finds locally optimal values of 8; via an
iterative method, holding ® fixed. And then, in the M-step, online LDA updates ®
using a weighted average of its previous value and noisy estimate corresponding to
;. If we control the learning rate such that old values are forgotten gradually, the ob-
jective with respect to posterior distribution p(Z, ®, @|W) converges to a stationary
point (more details can be found in Hoffman et al. (2010)).

3 (Wang and Blei 2011) adopts the ALS algorithm Hu et al. (2008) to solve an implicit feedback
problem. In our context, we use the SGD algorithm Koren et al. (2009) since ratings data are explicit.
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The odi-CTR algorithm follows the same strategy as bdi-CTR algorithm, separat-
ing the posterior distribution p(U, V,Z, ®, W, R) into LDA part and PMF part.
At each round, the estimations of LDA part and PMF part are conducted simulta-
neously. The algorithm is described in Algorithm 2. It is obvious that a significant

Algorithm 2 The Online Decoupled Inference algorithm for CTR model (odi-CTR)

Initialize U, V, Z randomly
for t=1to co do
Receive data sample (7, 7, 745, W)
Update 8; as the E-step in the online LDA method (Algorithm 2 in Hoffman et al. (2010))
Update ¥ as the M-step in the online LDA method
Update u;, v; using online gradient descent by Eq. (3)
end for
Output: U,V and Z

disadvantage of Algorithm bdi-CTR and odi-CTR is that both of them follow a two-
step inference procedure which is inconsistent with the joint graphical model of CTR
and rather suboptimal as the rating information is not used in discovering the low-
dimensional representation of documents.

The main challenge is the joint optimization of CTR model in an online learning
fashion. To start off, we first present inefficient (baseline) approach, bdi-CTR and
0di-CTR, and later shows our novel Online Bayesian Inference algorithm for CTR
model (obi-CTR).

3.2 The Online Bayesian Inference algorithm for CTR model (obi-CTR)

Instead of learning two point estimates of coefficients u;, v;, we take a more general
Bayesian-style approach and learn the posterior distribution ¢(u;,v;) in an online
method. For rating prediction, we take a weighted average over all the possible latent
vectors u; and v, or more precisely, an expectation of the prediction over g(u;, v;)
which is defined as

Pij £ Eu/ v;].

In addition, we set v; = €; + z;, which means the item latent vector v; is directly
close to Z;, where Z; is a vector with element z; = + 227:1 I(zF = 1) and I is
the indicator function that equals to 1 if predicate holds otherwise 0. This setting is
widely used in supervised topic model (Mcauliffe and Blei 2008; Zhu et al. 2012;
Agarwal and Chen 2010), and could simplify our following inference procedure.

Finally, Algorithm 3 summarizes the detailed framework of the proposed obi-
CTR algorithm. At each round t, we receive data sample and update both the param-
eters of LDA part and PMF part. The following discusses the optimization and each
step of the algorithm in detail.

Now, we propose our novel Online Bayesian Inference algorithm for CTR model
(obi-CTR) which is efficient and scalable for learning from data streams. Instead
of separate CTR into LDA step and PMF step, we consider to jointly optimize the
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Algorithm 3 Online Bayesian Inference algorithm for CTR model (obi-CTR)

Initialize U, V, Z randomly.
for t =1 to oo do
Receive data sample (2, j, 745, W)
Draw samples z* from Eq. (12)
Discard B burn-in sweeps, use the rest samples to update u;, v, ® following Eq. (6),(8).(10)
end for
Output: U,V and Z

unified objective function. Let us first review the objective function of CTR defined
in (1), from a variational point of view, this posterior is identical to the solution of the
following optimization problem:

min KL[¢(U,V,Z,®,0)|po(U,V,Z,P,0))]
(U, V,Z2,2,0)
— Eq[log p(W|Z, 2)p(R|U, V)]

st. ¢(U,V,2,8 0)cP, @)

where K L(q||p) is the Kullback-Leibler divergence, and P is the space of probabili-
ty distributions. Specifically, we find a posterior distribution ¢(U, V, Z, ®, ©) that is
not only close to the prior distribution po (U, V, Z, ®, ®) in terms of KL-divergence,
which implicitly express the relationship between V and Z (this is the key to CTR
model which makes the item vector v; close enough to the topic proportions z; and
diverge from it if necessary) but also has a high likelihood of explaining the observed
data R, W. If we add the constant log p(W)p(R)) to the above objective function,
it is the minimization of K L(q(U,V,Z, ®,0)|p(U,V,Z,®,0|W, R)). We can
use mean-field variational approximate inference which is a popular method for ap-
proximate posteriors (Blei et al. 2003; Hoffman et al. 2010). Inspired by streaming
Bayesian inference (Broderick et al. 2013; Ghahramani and Attias 2000), on the
arrival of new data (4, j, 7;;, w;), if we treat the posterior after observing ¢ — 1 sam-
ples as the new prior, the post-data posterior distribution g;+1(u;,v;,z;, ®,®) is
equivalent to the solution of the following optimization problem:

quanL[q(u“ Vi, 2j, q’? G)HQt(ula Vi, Zj, ‘Pa 6))]
~ Eqflog p(wj|z;, ®)p(rij|u v;)]
st. q(u;,vj,z;, ®,0)ecP. (5

This problem is intractable to compute. Here, we use mean field methods (Jor-
dan et al. 1999) widely emplyed in fitting topic model to efficiently obtain an ap-
proximation for the above problem. Specifically, we assume that g(u;,v;,z;) =
q(u;)q(v;)q(z;). Therefore, we can solve this problem via an iterative procedure
that alternatively updates each factor distribution as follows in detail.

For u;: By fixing the distribution ¢(v;), we can ignore irrelevant terms and solve

ﬁﬂn) KL[qg(u:)q(v;)llg:(w;)p(rijlu) v;)].
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The optimal solution has the following closed form solution:

Ge+1(u;) o g (1;) exp(By(y ) [log p(rij[u; v;)]).

If initial prior is normal go(u;) = N (u;; m?,, 9.), by induction we can show that

ui?

the inferred distribution at each round is also a normal distribution. Let us assume
q:(u;) = N(u;;ml,;, X¢.). Then, we have

o () o exp(— (g — )T (577 (s — )

)

—u/v;)?
202
- N(u27 mum E* )

(73,
+Eq(vy) [

where the posterior parameters are computed as

.
m,;m_ .
4+ — vy~ (6)

ko t \—1

Computing the full matrix X7, could be computationally expensive, particularly
when £ is large. To reduce computational cost, we only update the diagonals of co-
variance matrix X, which is equivalent to the assumption of Gaussian distribution
g(u) with diagonal covariance matrix.

For v;: The update rule of v; is similar to u; except adding a Gaussian distri-
bution p(€,;|z;, v;), a constraint about the distance between v; and z;, that explains
the difference between topic assignments in content and item preference based on

ratings. By fixing the distribution of g(u;) and ¢(z;), we have the update rule,
Gr+1(V) < 0t(v;) exp(Eq(u, ) log p(rijluf v;)p(e;|2;, v;)])
1 _
X exp(—i(vj - mij)T(Eij) I(Vj - mf}j)

(rig —ulv;)? (2, —v,)" (2, —v))
“"Eq(ui)q(zjv)[_ J 5 J/ _\4 J 5 J J D
202 2021k

_N(Vj7mvj>2*) (7)

where the posterior parameters are computed as

1
_ -1 -1
Emi;ﬂ - (Evj + 2) ) (8)
1 m,;m,
2* — Et — uLtttur \—1
vj (( v]) O_EQIK UgIK ) )

1
*
m,;, = Emsz m + Emwc - Emz:c*muz
J g2 % o2
€ T
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T oyt T .15 -
muiEme’W- m,; + m,; Yz 57%j — Tij

T 1
14+m,; Y. —zMy;
H

Besides, we adopt the same strategy that only updating the diagonals of covariance
matrix 7.
For ® By fixing the distribution ¢(Z) and ¢(W), ¢(®) can be solved as

Qt+1(‘1’k) X C]t(‘}k) eXp(Eq(Zt) [lngo(Zt)p(X|Zt7 Q)])a k= 1a 2a o 7K~ (9)

If the prior distribution ¢o(®) satisfy a Dirichlet distribution ®; =
Dir(AY,,---, AY%,,), then by induction the inferred distributions are also in the fam-
ily of Dirichlet distributions. We denote that g,(®x) = Dir(AL,, -, AL,), then
we can derive

q*(q)k) :DiT(Azla"' 7AZW)1 (10)
where A}, = Al -+ Zgil 7;?n]l[wjn = Wyoe) for all words wype (1 < Wyoe < D)
in the vocabulary ( D is the vocabulary size) and ’y;-“n = Ey:l[zjn = k] is the
probability of assigning each word w;, to topic k.

For z;: Given the distribution of other variables, the conditional distribution of
Zj is:

q(zj|v;, ®,w;)

o po(z;5) exp(Eq(a)q(v,) llog p(w;|z;, ®)p(e;|z;, v;)])

v, —2z;) (v;—Z
o) exp( Y Ay, — By [ ZJ;QI(KJ ), (1)
n€[N;] €

where A, v, = Eq@)[log(®z, u;,)] = P(AL 0,) = PCu,.. A% wnee)
(note that ¥(-) is the digamma function). It is difficult to directly update ® and
v; by using ¢(z;) due to the huge number of configurations. Therefore, we can do
Gibbs sampling to infer ¢(z;) by canceling out common factors and estimate the re-
quired expectations with multiple empirical samples. This hybird strategy has shown
promising performance for LDA (Mimno et al. 2012; Shi and Zhu 2014). Specifical-
ly, the conditional distribution of one varibale zj,, (the topic assignment of the n-th
word in item j ) given others z;—,, is

Q(Zjn = k‘zj—‘nvvja P, Win = wvoc) (12)
1 14 2Ck
k jn
o (a+ CjL,) exp(Ag g, + Fj\]—j(2mvjk - T))v

@) (i)

where z;, is the topic assignments in item j (except the n-th word) and C]’Ln is the
number of words in item 5 (except the n-th word) that are assigned to topic k. We can
see that term (i) is from the LDA model for observed word counts and the term (ii) is

from the PMF model and the relationship between v; and z;.
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4 Experimental Results
4.1 Dataset

Our experiments were conducted on an extended MovieLens dataset, named as
“MovieLens-10M-Plot” and “MovieLens-1M-Plot”*, which was originated from the
MovieLens °. Specifically, the original MovieLens 10M dataset provides a total of
10,000,053 rating records for 10,681 movies (items) by 69,878 users. However, the
original dataset has very limited fext content information. We enrich the dataset by
collecting additional text contents for each of the movie items. Specifically, for each
movie item, we first used its identifier number to find the movie listed in the IMDb®
website, and then collected its related text of “plot summary”. We then combine the
“plot summary” text together with each movie’s title and category text given in the
MovieLens-10M dataset as a text document to represent each movie. For detailed text
preprocessing, we follow the same procedure as the one described in Wang and Blei
(2011) to process text information. Finally, we form a vocabulary with 7,689 distinc-
t words. We then randomly select 1 million rating records to form a small dataset
named “MovieLens-1M-Plot”. Note that we did not consider the CiteUlike dataset ’
which was used in the previous study Wang and Blei (2011), because their dataset
only provides “like” and “dislike” preference, which is a kind of implicit feedback
and thus unsuitable for our regression task. By contrast, the MovieLens-10M dataset
has explicit feedback with ratings ranging from 1 to 5.

4.2 Experimental Setup and Metric

For each experiment, we randomly shuffle the rating records, and then divide them
into two parts: the first 90% of the shuffled rating records are used as the training
data, and the rest 10% rating data are used as test set. We also randomly draw 5%
out of the training data as the validation set for parameter selection. To make fair
comparisons, all the algorithms are conducted over 5 experimental runs of different
random permutations. For performance metric, we evaluate the performance of our
proposed method for prediction task by measuring Root Mean Square Error (RMSE)
defined as:

RMSE = /> (7 —ri;)?/N

In the online learning experiments, we evaluate the RMSE performance on the test
set after every 50,000 online iterations. In addition, we also evaluate the performance
of topic modeling via the log-likelihood of each word in text collection (Hoffman

4 We will release the dataset after the paper is accepted.
5 http://grouplens.org/datasets/movielens/

© http://www.imdb.com

7 http://www.citeulike.org/fag/data.adp
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et al. 2010), defined as,

1 test d O
perplexity(wt65t|‘1>,®) = exp {_Zd ng(wd | > )}7

test
jz:d,u;7ld1v
test

where nj;>" is the word count for word w in the d-th document.

4.3 Baselines for Comparison and Experimental Settings

In our experiments, we evaluate the proposed obi-CTR algorithms for rating predic-
tions by comparing with some important baselines as follows:

— PA-I: An online learning algorithm for solving online collaborative filtering tasks
by applying the popular online Passive-Aggressive (PA) algorithm (Blondel et al.
2014);

— bdi-CTR: the existing Collaborative Topic Regression (Wang and Blei 2011) . In
our context, we replace the ALS algorithm (Hu et al. 2008) with SGD algorithm
(Koren et al. 2009) since ratings data are explicit, and keep the rest same as the
original CTR (note that the LDA step is still performed in a batch manner);

— 0odi-CTR: The proposed Online Decoupled Inference algorithm for CTR model
in algorithm 2;

— 0bi-CTR: The proposed Online Bayesian Inference algorithm for CTR model in
algorithm 3.

Besides, to evaluate the topic modeling performance, we also compare our method
with the typical Online LDA method:

— Online-LDA: an online Bayesian variational inference algorithom for LDA mod-
el (Hoffman et al. 2010). We take it as a baseline to evaluate how well the model
fits the data with the predictive distribution.

For parameter settings, we find the optimal parameters for different algorithms
(PA-I, bdi-CTR, odi-CTR and obi-CTR). Specifically, the parameters including c
in PA-I, o, 0, and p in bdi-CTR and odi-CTR, and o, and o, in obi-CTR. Al-
1 of these parameters are found by performing a grid search as follows: o.,0, €
{0.5,1,2,4,8,16,32}, ¢ € {0.01,0.1,0.2,0.5,1}, p € {0.01,0.05,0.1,0.2,0.5},
ou, 0y € {0.01,0.02,0.04,0.08,0.16,0.32} and K € {5,10,20}.

4.4 Evaluation of Online Rating Prediction Tasks

Figure 2(a),2(b),2(c) compare the online performance of the above methods in K =
5, K = 10 and K = 20 on the MovieLens-10M-Plot dataset and MovieLens-1M-
Plot dataset. Note that the bdi-CTR method need to precompute the parameters ® and
& by a batch variational inference algorithm®. Figure 2 shows only its performance
in the downstream collaborative filtering phase.

8 For the vanilla LDA inference method, a larger K value often needs more time for computation.
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Fig. 2 Figure (a)(b)(c) show the evaluation of RMSE performance by different online algorithms (left
column for the MovieLens-10M-Plot dataset, right colum for the MovieLens-1M-Plot dataset).
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Table 1 RMSE results after a single pass over MovieLens-10M-Plot and MovieLens-1M-Plot dataset

MovieLens-10M-Plot | k=5 k=10 k=20
PA-I 0.9176 +o.0004 | 0.9085 +o0.0002 | 0.9148 +0.0003
bdi-CTR 0.8874 +o0003 | 0.8812 +0.000s | 0.8947 +0.0007
odi-CTR 0.9034 +o006 | 0.9054 +o000s | 0.9085 o002
obi-CTR 0.8763 +o.0006 | 0.8788 +o.0001 | 0.8747 +o0.0006

MovieLens-1M-Plot | k=5 k=10 k=20
PA-1 0.9692 +o.0007 | 0.9547 +o00008 | 0.9775 +0.0000
bdi-CTR 0.9488 o004 | 0.9488 oooos | 0.9548 o007
0odi-CTR 0.9805 +o0.0004 | 0.9809 +0.0003 | 0.9826 +0.0003
obi-CTR 0.9390 +o0001 | 0.9393 00006 | 0.9392 +0.0006

As we can see from Figure 2(a),2(b),2(c), the CTR-based approaches outperform
the online CF algorithm (PA-I) for most cases, which is in line with the experiments
in (Wang and Blei 2011) and validates the efficacy of leveraging additional text
information to improve the performance of PMF for online rating prediction tasks.
Second, among different CTR-based approaches, the proposed obi-CTR consistent-
ly outperforms the other algorithms for most cases. This validates the importance of
jointly optimizing both online PMF and online LDA to achieve tight coupling of the
two techniques. Moreover, it is interesting to find that the gap between the proposed
0di-CTR variant and obi-CTR tends to become more significant when K is smaller.
We conjecture that this is because when K is small, the PMF performance is rela-
tively inaccurate and thus including the joint optimization becomes more critical for
enhancing the unreliable PMF prediction performance. Finally, Table 1 summarizes
the final test-set RMSE results after finishing the whole online learning tasks (by a
single pass over the training set). Similar observations can be found , in which obi-
CTR achieves the lowest RMSE result on the test set for rating prediction among
all the algorithms. In addition, bdi-CTR has better performance than odi-CTR. This
is because bdi-CTR directly takes the batch LDA results (pre-computed ® and P)
as input for leveraging online PMF task, while odi-CTR may converge relatively s-
lowly (without the tight coupling). This again shows that it is crucial for the joint
optimization in obi-CTR.

4.5 Performance on Online Topic modeling Tasks

Figure 3 shows the results about online average predictive log likelihood for obi-CTR
and Online LDA. Online learning allows us to conduct a large-scale comparison.
We can see that obi-CTR exhibits consistently better performance than Online LDA,
which ignores ratings informpation, regardless of how many topics we use. That is
due to the utilization of rating information to discover the low-dimensional topic
proportions, where obi-CTR yields additional benefit on this task.
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Fig. 3 Figure (a)(b)(c) demonstrate the online per-word predictive log likelihood comparisons be-
tween obi-CTR and Online LDA (left column for the MovieLens-10M-Plot dataset, right colum for the
MovieLens-1M-Plot dataset).
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Table 2 Interpretability of the latent structures learned

Top Topic by obi-CTR

1. comedy, children, romance, animal, music, fantasy, drama, friend, family
2. work, find, die, life, only, time, kill, event, end, plan, final

Top Topic by bdi-CTR

1. adventure, story, young, ring, king, prince, come, toy, music, world, begin, place
2. thriller, help, kill, mission, murder, lawyer, harry, evil, want, live, discover
In User’s Ratings r Tobi— CTR Tbdi— CTR
Sound of Music 4.5 44 4.7

1984 (Nineteen Eighty-Four) 4 3.9 44
Fantasia 5 4.2 4.2
Finding Nemo 5 4.5 42
Schindler’s List 5 4.8 5
Memento 5 4.7 5

Star Wars: Episode IV 4.5 4.6 4.8
Matrix Reloaded, The 3 3.5 3.9

Life is beautiful 5 4.9 4.6

City of God 4.5 4.7 4.8

4.6 Case Study

To gain a deeper insight into the difference between bdi-CTR and obi-CTR, we
choose one example user to conduct a case study. One advantage of the obi-CTR
model is that it can explain the user latent space better than bdi-CTR model. In Table
2, we list the top 2 topic of this user and randomly select 10 movies he has rated
before. obi-CTR gives a more accurate prediction than bdi-CTR. When digging into
the data, we find that the top topic of obi-CTR contains words like “’children”, "com-
edy”, but the top topic of bdi-CTR contains word like adventure”, story”. Thus,
obi-CTR gives a higher rating for movie “Finding Nemo” which is more close to the
true rating.

4.7 Evaluation of Parameter Sensitivity

Figure 4 shows how RMSE is affected by the choice of two key parameters o, and
o, in obi-CTR. As observed from Figure 4, at the beginning, increasing o, leads to
decrease the RMSE quickly. After arriving some optimal value, increasing o, further
may increase the RMSE gradually. Second, we found the optimal value of o, also
largely depends on the setting of the parameter o,. When o, is smaller, the optimal
value of o, is relatively smaller. However, after reaching the optimal value, the further
performance changing becomes limited. This indicates that overall, it is relatively
easy to choose a good value of o, given a fixed o, setting due to its less sensitivity
in the range of optimal values. Our results were consistent to the similar phenomena
observed in (Wang and Blei 2011).

Table 3 shows the computation cost for training Online-LDA, bdi-CTR, odi-CTR
and obi-CTR. Figure 5 demonstrates the effect of increasing model complexity K.
This investigation is done by selecting the best achievable RMSE and log-likelihood
during the grid parameter search process. As shown in the diagram, increasing the
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Fig. 5 This Figure demonstrates the evaluation of obi-CTR result by varying K

complexity of models (higher K values) leads to improvement of both RMSE and
log-likelihood results. However, the gain of predictive performance is paid by a sig-
nificant computational overhead for more complex models (as shown in Table 3). In
a practical online recommender system, one may want to choose a proper value of K
to balance the tradeoff between accuracy and computational efficiency.
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Table 3 Running time measured in seconds consumed for each model size (K).

k=5 | k=10 | k=20 | k=50 | k=100

Online-LDA | 725 | 892 | 1790 | 4004 | 7901
bdi-CTR 5338 | 6407 | 14456 | 31125 | 63048
0di-CTR 1177 | 1571 | 3085 | 6256 | 12816
obi-CTR 1839 | 2372 | 4817 | 10372 | 21013

5 Conclusion

This paper investigated online learning algorithms for making inference algorithm for
Collaborative Topic Regression (CTR) model practical for real-world online recom-
mender systems. Specifically, unlike bdi-CTR that loosely combines LDA and PMF,
we propose a novel Online Bayesian Inference algorithm for CTR model (obi-CTR)
which performs a joint optimization of both LDA and PMF to achieve a tight cou-
pling. Our encouraging results showed that obi-CTR converges much faster than the
other competing algorithms in the online learning, and thus achieved the best predic-
tion performance among all the compared algorithms. Our future work will analyze
model interpretability and theoretical performance of the proposed algorithms.
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