Online ARIMA Algorithms for Time Series Prediction (supplemental file)

Chenghao Liu^{1,3}, Peilin Zhao², Steven C.H. Hoi³, Jianling Sun¹ ¹School of Computer Science and Technology, Zhejiang University, China ²Institute for Infocomm Research, A*STAR, Singapore ³School of Information Systems, Singapore Management University, Singapore twinsken@zju.edu.cn, zhaop@i2r.a-star.edu.sg, chhoi@smu.edu.sg

November 25, 2015

This document provides the materials of our detailed Trivially, it always holds that proofs to supplement our main submission manuscript.

Proofs of Lemma in Main Manuscript

We re-iterate some necessary assumptions in our theoretical analysis.

- 1. The coefficients β_i satisfy that a q-th order difference equation with coefficients $|\beta_1|, |\beta_2|, \dots, |\beta_q|$ is a stationary process; and
- 2. The noise terms are stochastically and independently generated, which satisfy $\mathbb{E}[|\epsilon_t|] < M_{max} < \infty$ and $\mathbb{E}[\ell_t(X_t, X_t - \epsilon_t)] < \infty$; and
- 3. The loss function ℓ_t is Lipshitz continuous for some Lipshitz constant L > 0; and
- 4. The coefficients α_i satisfy $|\alpha_i| < c$ for some $c \in \mathbb{R}$.

Lemma 1. From any time series sequence satisfies our assumption, it holds that

$$\min_{\gamma} \sum_{t=1}^{T} \ell_t^m(\gamma) \le \sum_{t=1}^{T} f_t^m(\alpha^*, \beta^*).$$

Proof. Note that if we set $\gamma_i^{\star} = c_i(\alpha^{\star}, \beta^{\star})$, we immediately get that

$$\sum_{t=1}^{T} \ell_t^m(\gamma^*) = \sum_{t=1}^{T} f_t^m(\alpha^*, \beta^*).$$

$$\min_{\boldsymbol{\gamma}} \sum_{t=1}^T \ell_t^m(\boldsymbol{\gamma}) \leq \sum_{t=1}^T \ell_t^m(\boldsymbol{\gamma}^\star),$$

which completes the proof.

Lemma 2. Given assumption 1 that a q-th order difference equation with coefficients $|\beta_1| \cdots, |\beta_q|$ and observations $\{X_t\}_{t=-(q-1)}^T$ is a stationary process, $\lambda_1, \dots, \lambda_q$ are the q roots of this AR characteristic equation. Let we set $\lambda_{min} = \{|\lambda_1|, \cdots, |\lambda_q|\}$, it holds that

$$X_t \le \lambda_{min}^t (X_0 + X_1 + \dots + X_{-(q-1)}).$$

Lemma 3. For any time series sequence satisfies our assumption, it holds that

$$|\sum_{t=1}^{T} \mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \sum_{t=1}^{T} \mathbb{E}[f_t^{m}(\alpha^{\star}, \beta^{\star})]| = O(1),$$

if we choose $m = \log_{\lambda_{min}} ((TLM_{max}q)^{-1}).$

Proof. For arbitrary t, we focus on the distance between $f_t^\infty(\alpha^\star,\beta^\star)$ and $f_t^m(\alpha^\star,\beta^\star)$ in expectation. First, for any $m \in \{0, -1, \cdots, -(1 - q)\}$ we have that $\nabla^d X_t^m(\alpha^{\star}, \beta^{\star}) = \nabla^d X_t$ from definition, and hence

$$\begin{aligned} & |\nabla^{d}X_{t}^{m}(\alpha^{\star}, \beta^{\star}) - \nabla^{d}X_{t}^{\infty}(\alpha^{\star}, \beta^{\star})| \\ & \leq |\nabla^{d}X_{t} - \nabla^{d}X_{t}^{\infty}(\alpha^{\star}, \beta^{\star})| \\ & < |\nabla^{d}X_{t} - \nabla^{d}X_{t}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{t}| + |\epsilon_{t}|. \end{aligned}$$

From assumption 2, we know $\mathbb{E}[|\epsilon_t|] < M_{max} < \infty$ for all t and $\mathbb{E}[|\nabla^d X_t - \nabla^d X_t^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_t|]$ decays exponentially as proven in lemma 4, and hence we have
$$\begin{split} |\nabla^d X_t^m(\alpha^\star,\beta^\star) - \nabla^d X_t^\infty(\alpha^\star,\beta^\star)| &< 2M_{max}. \text{ Next, we show that } |\nabla^d X_t^m(\alpha^\star,\beta^\star) - \nabla^d X_t^\infty(\alpha^\star,\beta^\star)| \text{ exponension}. \end{split}$$
tially decreases as m increases linearly.

$$\begin{split} &|\nabla^{d}X_{t}^{m}(\alpha^{\star},\beta^{\star}) - \nabla^{d}X_{t}^{\infty}(\alpha^{\star},\beta^{\star})| \\ &= |\sum_{i=1}^{q} \beta_{i}^{\star}(\nabla^{d}X_{t-i} - \nabla^{d}X_{t-i}^{m-i}(\alpha^{\star},\beta^{\star})) \\ &- \sum_{i=1}^{q} (\nabla^{d}X_{t-i} - \nabla^{d}X_{t-i}^{\infty}(\alpha^{\star},\beta^{\star}))| \\ &= |\sum_{i=1}^{q} \beta_{i}^{\star}(\nabla^{d}X_{t-i}^{\infty}(\alpha^{\star},\beta^{\star}) - \nabla^{d}X_{t-i}^{m-i}(\alpha^{\star},\beta^{\star}))| \\ &\leq \sum_{i=1}^{q} |\beta_{i}^{\star}||\nabla^{d}X_{t-i}^{\infty}(\alpha^{\star},\beta^{\star}) - \nabla^{d}X_{t-i}^{m-i}(\alpha^{\star},\beta^{\star})|. \end{split}$$

We can easily find $|\nabla^d X_t^m(\alpha^{\star}, \beta^{\star}) - X_t^{\infty}(\alpha^{\star}, \beta^{\star})|$ satisfy a qth order difference inequality with coefficients $|\beta_1^{\star}|, |\beta_2^{\star}|, \cdots, |\beta_q^{\star}|$. From assumption 1 and Lemma 2, we have

$$\begin{split} &|\nabla^d X_t^m(\alpha^\star,\beta^\star) - \nabla^d X_t^\infty(\alpha^\star,\beta^\star)| \\ &\leq \lambda_{min}^m(|\nabla^d X_{t-m}^0(\alpha^\star,\beta^\star) - \nabla^d X_{t-m}^\infty(\alpha^\star,\beta^\star)| \\ &+ |\nabla^d X_{t-m-1}^{-1}(\alpha^\star,\beta^\star) - \nabla^d X_{t-m-1}^\infty(\alpha^\star,\beta^\star)| + \cdots \\ &+ |\nabla^d X_{t-m-(q-1)}^{-(q-1)}(\alpha^\star,\beta^\star) - \nabla^d X_{t-m-(q-1)}^\infty(\alpha^\star,\beta^\star)|) \\ &\leq 2q M_{max} \lambda_{min}^m. \end{split}$$

Since all $\nabla^i X_{t-1} (i \in \{1, 2, ..., d-1\})$ are fixed and hence it follows that

$$\begin{split} &|X_t^m(\alpha^\star,\beta^\star) - X_t^\infty(\alpha^\star,\beta^\star)| \\ &= |\nabla^d X_t^m(\alpha^\star,\beta^\star) + \sum_{i=1}^{d-1} \nabla^i X_{t-1} \\ &- \nabla^d X_t^\infty((\alpha^\star,\beta^\star) - \sum_{i=1}^{d-1} \nabla^i X_{t-1}| \\ &= |\nabla^d X_t^m(\alpha^\star,\beta^\star) - \nabla^d X_t^\infty(\alpha^\star,\beta^\star)| \leq 2q M_{max} \lambda_{min}^m \end{split}$$

follows that

$$\begin{split} &|\mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \mathbb{E}[f_t^{m}(\alpha^{\star}, \beta^{\star})]| \\ &= |\mathbb{E}[\ell_t(X_t, X_t^{\infty}(\alpha^{\star}, \beta^{\star}))] - \mathbb{E}[\ell_t(X_t, X_t^{m}(\alpha^{\star}, \beta^{\star}))]| \\ &\leq \mathbb{E}[|\ell_t(X_t, X_t^{\infty}(\alpha^{\star}, \beta^{\star})) - \ell_t(X_t, X_t^{m}(\alpha^{\star}, \beta^{\star}))|] \\ &\leq L \cdot \mathbb{E}[|X_t^{m}(\alpha^{\star}, \beta^{\star}) - X_t^{\infty}(\alpha^{\star}, \beta^{\star})|] \\ &\leq L \cdot 2qM_{max}\lambda_{min}^m, \end{split}$$

where the first inequality follows from Jensen's inequality. By summing the above for all t we get that

$$\begin{split} &|\sum_{t=1}^{T} \mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \sum_{t=1}^{T} \mathbb{E}[f_t^{m}(\alpha^{\star}, \beta^{\star})]| \\ &\leq TL \cdot 2qM_{max}\lambda_{min}^{m} \end{split}$$

Finally, choosing $m = \log_{\lambda_{min}} ((TLq)^{-1})$ yields

$$|\sum_{t=1}^T \mathbb{E}[f_t^\infty(\alpha^\star,\beta^\star)] - \sum_{t=1}^T \mathbb{E}[f_t^m(\alpha^\star,\beta^\star)]| = O(1).$$

Lemma 4. For any time series sequence satisfies our assumption, it holds that

$$\left|\sum_{t=1}^{T} \mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \sum_{t=1}^{T} \mathbb{E}[f_t(\alpha^{\star}, \beta^{\star})]\right| = O(1).$$

Proof. First, we prove that $\mathbb{E}[|\nabla^d X_t - \nabla^d X_t^{\infty}(\alpha^{\star}, \beta^{\star}) \epsilon_t$ decays exponentially as the t increases linearly.

$$\begin{split} &\mathbb{E}[|\nabla^{d}X_{t} - \nabla^{d}X_{t}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{t}|] \\ &= \mathbb{E}[|\sum_{i=1}^{k} \alpha_{i}^{\star}\nabla^{d}X_{t-i} + \sum_{i=1}^{q} \beta^{\star}\epsilon_{t-i} + \epsilon_{t} - \sum_{i=1}^{k} \alpha^{\star}\nabla^{d}X_{t-i} \\ &- \sum_{i=1}^{q} \beta^{\star}(\nabla^{d}X_{t-i} - \nabla^{d}X_{t-i}^{\infty}(\alpha^{\star}, \beta^{\star})) - \epsilon_{t}|] \\ &= \mathbb{E}[|\sum_{i=1}^{q} \beta_{i}^{\star}(\nabla^{d}X_{t-i}^{\infty}(\alpha^{\star}, \beta^{\star}) - \nabla^{d}X_{t-i} + \epsilon_{t-i})|] \\ &\leq \sum_{i=1}^{q} |\beta_{i}^{\star}|\mathbb{E}[|\nabla^{d}X_{t-i} - \nabla^{d}X_{t-i}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{t-i}|]. \end{split}$$

Recall that ℓ_t is assumed to be Lipshitz continuous for We could regard $\mathbb{E}[|\nabla^d X_t - \nabla^d X_t^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_t]]$ some constant L>0 from our assumption, and hence it as a qth order difference inequality with coefficients $|\beta_1^{\star}|, |\beta_2^{\star}|, \cdots, |\beta_q^{\star}|$. From assumption 1 and Lemma 2, we have

$$\begin{split} & \mathbb{E}[|\nabla^{d}X_{t} - \nabla^{d}X_{t}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{t}|] \\ & \leq \lambda_{min}^{t}(\mathbb{E}[|\nabla^{d}X_{0} - \nabla^{d}X_{0}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{-1}|] \\ & + \mathbb{E}[|\nabla^{d}X_{-1} - \nabla^{d}X_{-1}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{-1}|] + \cdots \\ & + \mathbb{E}[|\nabla^{d}X_{-(q-1)} - \nabla^{d}X_{-(q-1)}^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_{-q})|]) \\ & = \lambda_{min}^{t}\rho, \end{split}$$

where ρ represents the right-hand side of λ_{min}^t for simplicity. According to Lemma 2, we know $|\lambda_{min}| < 1$, which ends the proof. Since all $\nabla^i X_{t-1} (i \in \{1, 2, ..., d-1\})$ are fixed and hence it follows that

$$\mathbb{E}[|X_t - X_t^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_t|]$$

$$= \mathbb{E}[|\nabla^d X_t + \sum_{i=1}^{d-1} \nabla^i X_{t-1} - \nabla^d X_t^{\infty}((\alpha^{\star}, \beta^{\star})) - \sum_{i=1}^{d-1} \nabla^i X_{t-1} - \epsilon_t|]$$

$$= \mathbb{E}[|\nabla^d X_t - \nabla^d X_t^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_t|] \le \lambda_{min}^t \rho.$$

From Assumption 2, ϵ_t is stochastic and independent of $\epsilon_1, \ldots, \epsilon_{t-1}$ and hence the best prediction available at time t will cause a loss of at lest $\ell_t(X_t, X_t - \epsilon_t)$. The best ARIMA model coefficients (α', β') in hindsight are those have generated signal, which follows that

$$\sum_{t=1}^{T} f_t(\alpha', \beta') = \sum_{t=1}^{T} \ell_t(X_t, X_t - \epsilon_t).$$

Recall that ℓ_t is assumed to be Lipshitz continuous for some constant L > 0, and hence it follows that

$$\begin{aligned} &|\mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \mathbb{E}[f_t(\alpha^{\star}, \beta^{\star})]| \\ &= |\mathbb{E}[\ell_t(X_t, X_t^{\infty}(\alpha^{\star}, \beta^{\star}))] - \mathbb{E}[\ell_t(X_t, X - t - \epsilon_t)]| \\ &= |\mathbb{E}[\ell_t(X_t, X_t^{\infty}(\alpha^{\star}, \beta^{\star})) - \ell_t(X_t, X - t - \epsilon_t)]| \\ &\leq \mathbb{E}[|\ell_t(X_t, X_t^{\infty}(\alpha^{\star}, \beta^{\star})) - \ell_t(X_t, X - t - \epsilon_t)]|] \\ &\leq L \cdot \mathbb{E}[|X_t - X_t^{\infty}(\alpha^{\star}, \beta^{\star}) - \epsilon_t|] \leq \rho \lambda_{min}^t. \end{aligned}$$

Finally, summing over all iterations yields

$$\left|\sum_{t=1}^{T} \mathbb{E}[f_t^{\infty}(\alpha^{\star}, \beta^{\star})] - \sum_{t=1}^{T} \mathbb{E}[f_t(\alpha^{\star}, \beta^{\star})]\right| = O(1).$$