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This document provides the materials of our detailed
proofs to supplement our main submission manuscript.

Proofs of Lemma in Main Manuscript

We re-iterate some necessary assumptions in our theoret-
ical analysis.

1. The coefficients 3; satisfy that a ¢-th order difference
equation with coefficients |31, |B2], ..., |Bq] s a s-
tationary process; and

2. The noise terms are stochastically and independently
generated, which satisfy E[|e;|] < Mqr < 00 and
]Ewt(Xh Xt — Et)] < 005 and

3. The loss function ¢, is Lipshitz continuous for some
Lipshitz constant L > 0; and

4. The coefficients «; satisfy |o;| < ¢ for some ¢ € R.

Lemma 1. From any time series sequence satisfies our
assumption, it holds that
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Trivially, it always holds that
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which completes the proof. O

Lemma 2. Given assumption I that a g-th order differ-
ence equation with coefficients |B1|--- |8, er-
vations {Xt}zﬂ:f(qfl) is a stationary process, A1, - -+ , Aq
are the q roots of this AR characteristic equation. Let we
set Apmin = {|A1], - , it holds that

X < Mpin(Xo + X1+ + X g-1))-

Lemma 3. For any time series sequence satisfies our as-
sumption, it holds that
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Proof. For arbitrary t, we focus on the distance be-
tween f°(a*, %) and f{"(a*, 5*) in expectation. First,
for any m € {0,-1, —(1 — ¢q)} we have that
ViX ™ (a*, B*) = V?X, from definition, and hence
IVIXT (o, 57) = VX2 (o, 5Y)]
< IVIX, - VX7 (o, %)
<|VIX, = VIX (a8, B) — e + |l
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From assumption 2, we know E[|¢;|] < My < oo follows that
for all t and E[|VIX; — VX (a*, 8*) — &]] decays - . . .
exponentially as proven in lemma [4] and hence we have [E[f°(a", 8)] = E[f{" (", B7)]|

|VEAX (ar, B*) — VX (a*, B*)] < 2Mpae- Next, we = |E[l (X, X0 (o, 57))] — B[l (X, X" (", 7))]|
show that [V9X["(a*, 5*) — VX (a*, B%)| exponen- < B[|6,(X;, X7°(o*, B%)) — £u( Xy, X" (%, B*))]]
tially d i linearly. my x o co( x o
ially decreases as m increases linearly. < L-E[X(a*, 8%) — X(a*, BY)]]
VX[ (aF, B%) = VIXPo (", BY)) < L 2¢MmazAmin,
q . . . .
_ “(ViX, ;- VIX™Ti(o*, B* where the first inequality follows from Jensen’s inequali-
| 121 gl k i (@ 5) ty. By summing the above for all t we get that
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1 Finally, choosing m = logy . ((T'Lq)~"') yields
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We can easily find [VIX[(a*, %) — X°(a*, B*)| sat-

isfy a qth order difference inequality with coefficients -
181,181, - -+, |B3]. From assumption 1 and Lemma 2, Jemmad. For any time series sequence satisfies our as-
we have sumption, it holds that
|Vde(oz*,ﬁ*)—Vdeo(oz*,,B*)\ T T
< N (VIXE 0%, B) = VX2, (0", 57| | 2Bl (@ 8] = D _El(@” )] = 0.
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d " (g— 11) . ox tdmool s Proof. First, we prove that E[|[V/X; — VIX>®(a*, %) —
+IVIX, —(q— 1)(0‘ A7) =V thmf(qfl)(a el €:|] decays exponentially as the t increases linearly.
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Since all Vi X, 1(i € {1,2,...,d—1}) are fixed and hence k . q k 4
it follows that =B oiVIX, i+ ) Beaite—Y o'ViX,
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Recall that 4, is assumed to be Lipshitz continuous for We could regard E[|[VYX, — VIX>®(a*, %) — &
some constant L > 0 from our assumption , and hence it as a qth order difference inequality with coefficients



1811,1851,- - ,|B5]. From assumption 1 and Lemma
we have

E[[VX, — VX (0", 6%) — ]

< AMin (B[ VX0 = VIXG®(a*, 8%) — 1]
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where p represents the right-hand side of X!, for sim-

plicity. According to Lemma 2| we know |Anin| < 1,
which ends the proof. Since all ViXt,l(i €{1,2,...d—
1}) are fixed and hence it follows that

E[| Xy — X7* (", B%) — el]
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From Assumption 2, €; is stochastic and independent of
€1,...,€—1 and hence the best prediction available at
time t will cause a loss of at lest £;( X, X; — ¢). The
best ARIMA model coefficients (o’, ') in hindsight are
those have generated signal, which follows that

T T
th(a/’ﬂ,) = th(Xt, Xi — &)
t=1

t=1

Recall that ¢; is assumed to be Lipshitz continuous for
some constant L. > 0, and hence it follows that

[E[f=(a", 87)] = Elfi(e”, 7)]|

= [E[fe(X¢, X2 (", 87))] — E[le(Xe, X —t — €|
= [E[ls( Xy, X (e, 87)) — (X, X —t — &)]]

< E[J6 (X, X ( 7)) = (X, X =t —€)]]]
< L-E[|X; — X{2(a", 8%) — el] < pArin-

Finally, summing over all iterations yields
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